
Virtual Secure Mode: Protections of Communication
Interfaces

Aleksandar Milenkoski
amilenkoski@ernw.de)

This work is part of theWindows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author ()).

The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung,
Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik - BSI).

Required Reading
In addition to referenced work, related work focussing onWindows Architecture and Virtual SecureMode (VSM),
part of the Windows Insight series, are relevant for understanding concepts and terms mentioned in this docu-
ment.

Technology Domain
The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

1 Introduction
This work discusses implemented mechanisms for securing the VSM communication interfaces.

2 Restrictions on Issuing VTL Calls
Hyper-V restricts the issuing of VTL calls. For a VTL call to be issued, among other things, it has to be initiated
from the most privileged CPU mode. For example, an entity invoking a VTL call have to execute with a Current
Privilege Level (CPL) of 0, which is assigned by the processor executing the entity. Further, the input values
have to be valid. ([Mic17], Section 15.6.1.1) describes the restrictions on issuing VTL calls in greater detail.

3 Marshalling and Sanitization
The secure kernel marshalls and sanitizes the input and output data of VTL returns. An example is the invo-
cation of functions referenced in the IumSyscallArgFcnTable array. These functions are invoked in the IumApi_-
NtGENERIC function. This function, in turn, is invoked in SkSyscall before and after a VTL return is issued by
SkCallNormalMode. SkSyscall is where the secure kernel issues VTL returns to request normal-mode services.
The functions referenced in the IumSyscallArgFcnTable array marshall and sanitize data passed to, and returned
from, the normal kernel. This is a security measure for checking, controlling, and managing the data coming
in, and going out of, the secure kernel in a centralized way. This significantly reduces the risk of exploiting
implementation or design errors involving the malicious manipulation of this data. It also indicates that data
originating from the normal kernel is not explicitly trusted by the secure kernel.

Figure 1 depicts the contents of the IumSyscallArgFcnTable array. The array references functions that rep-
resent data marshallers and sanitizers for data of simple types and on a per-type basis for data of complex
types. The latter involve marshallers and sanitizers of data of specific data structures. The IumArg_GENERIC
function (see Figure 1) performs generic marshalling and sanitization. IumArg_PALPC_MESSAGE_ATTRIBUTES
and IumArg_PPORT_MESSAGE are examples of per-type marshallers and sanitizers of data of type ALPC_MES-
SAGE_ATTRIBUTES and PORT_MESSAGE.

Figure 1: The IumSyscallArgFcnTable array

4 Access Control: Hypercalls
Hyper-V enforces access control over hypercall execution. For a partition to execute a hypercall protected by
access control, it has to possess the required privileges. These privileges are assigned by the hypervisor to
each partition in the form of flags declared as part of a bitmask. The bitmask is stored in the HvPartitionProp-
ertyPrivilegeFlags Hyper-V variable ([Mic17], Section 4.2.2).

Figure 2 depicts the value of HvPartitionPropertyPrivilegeFlags assigned to the partition hosting the normal and
the secure kernel. The HvPartitionPropertyPrivilegeFlags queries the value of HvPartitionPropertyPrivilegeFlags.
This function is implemented as part of the winhvr driver. When the second parameter of WinHvGetPartition-
Property is 0x10000, the function queries the value of HvPartitionPropertyPrivilegeFlags from the hypervisor
(003b800000002e7f in Figure 2).

([Mic17], Section 4.2.2) provides information on the layout of the privilege flags that are part of HvPartition-
PropertyPrivilegeFlags and how the flags can be interpreted. For example, the CreatePartitions privilege flag
implements access control over the execution of the HvCreatePartition hypercall. The PostMessages privilege
flag implements access control over the execution of the HvPostMessage hypercall.

5 Access Control: IUM System Calls
The secure kernel implements access control over the execution of IUM system calls. The IUM system calls
IumSecureStorageGet, IumSecureStoragePut, IumCreateSecureSection, IumGetDmaEnabler, IumOpenSecureSec-
tion, and IumProtectSecureIo are protected by access control. These functions evaluate flag values and return

Figure 2: A value of HvPartitionPropertyPrivilegeFlags

the error code 0xC0000022 (STATUS_ACCESS_DENIED) if the flags are not set.1 The evaluated flags are stored
at offsets of an address stored in the gs:8 register. The flags are declared as part of the policy options of the
trustlet invoking the IUM system calls. These options are used by the secure kernel to enable or disable secure
kernel functionalities for trustlet, such as execution of IUM system calls. The policy options are described in
([YIRS17], Section “Trustlet Policy Metadata”). Policy options of trustlets are signed data. A modification of
this data results in invalidation of its signature and prevents the execution of the trustlets associated with the
modified options.

6 Secure Data Sharing: Mailboxes
The concept of mailboxes enables trustlets to share data with entities running in the normal environment in a
secure manner. Figure 3 depicts the workflow of mailbox-based data sharing.

When a trustlet has data that it needs to share with an entity running in the normal environment, it populates
a mailbox with the data. A mailbox is a memory region designated for storing shared data. Each mailbox can
be uniquely identified by a mailbox ID. A trustlet populates a mailbox by issuing the IumPostMailbox IUM system
call. The first parameter of this function is the ID of the mailbox to be populated (ID in Figure 3), the second
stores the address of the data buffer where the shared data is stored (buf in Figure 3), and the third is the buffer
size (size in Figure 3).

Each trustlet may have up to eight mailboxes. Possible mailbox IDs are between 0 and 7. The maximum size
of each mailbox is 4092 bytes. IumPostMailbox evaluates the trustlet-provided mailbox ID and mailbox size
against the previously mentioned upper values. IumPostMailbox then allocates heap memory. It also copies
the data stored at the address that is the second parameter of IumPostMailbox at offset 0x4 of the allocated
memory. The beginning of the allocatedmemory stores the size of the copied data. Finally, IumPostMailbox loads
the address of the heap memory storing the shared data, and the size of the data, to an address referencing
the mailbox indexed by the trustlet-provided mailbox ID. This is done by executing an atomic compare-and-
exchange operation implemented with the cmpxchg instruction.2

The implementation of cmpxchg in IumPostMailbox indicates that the trustlet-provided data to be shared is stored
in amailbox only if themailbox is empty; that is, if the address referencing themailbox is zeroed out. The address
referencing themailbox with ID is at offset 0x8*ID+0x100 of the address stored at gs:8+0x30 (offset: 0x8*ID+0x100
← buf in Figure 3). gs:8 is the address stored in the gs:8 register at the time of issuing IumPostMailbox.

1https://msdn.microsoft.com/en-us/library/cc704588.aspx [Retrieved: 19/4/2018]
2https://msdn.microsoft.com/en-us/library/windows/desktop/ms683560(v=vs.85).aspx [Retrieved: 20/4/2018]

https://msdn.microsoft.com/en-us/library/cc704588.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683560(v=vs.85).aspx

Legend:

process flow

mailbox

Secure kernel

0

VTL 1

1 22

3 4 5

76

Trustlet

IumPostMailbox (ID, buf, size)

offset: 0x8*ID+0x100 ← buf

Normal kernel

Process / thread / service

VslpRetrieveMailbox (.., ID, key, ..)

SkCallNormalMode: ret_buf

VslpEnterIumSecureMode
HvlSwitchToVtl1

SkpsReferenceTrustletByMailboxKey (key)
rbp =0; xchg rbp, offset: 0x8*ID+0x100
ret_buf ← rbp

SkRetrieveMailbox (..,ID, key, ..)

VTL 0

call stack

Figure 3: The workflow of mailbox-based data sharing

Once data is stored in a mailbox, entities running in the normal environment can retrieve it. This is done by
invoking the VslRetrieveMailbox function implemented in the normal kernel. Parameters of VslRetrieveMailbox
include the ID of the mailbox from which data is retrieved (ID in Figure 3) and a mailbox key (key in Figure 3).
A mailbox key serves as a password for retrieving data stored in the mailboxes of a given trustlet. VslRetrieve-
Mailbox stores the mailbox ID and the mailbox key in a buffer and issues a VTL call passing the buffer as input
data.

VslRetrieveMailbox issues a VTL call by invoking the VslpEnterIumSecureMode and HvlSwitchToVtl1 functions.
VslRetrieveMailbox requests a secure service with SSCN 0x13. This results in invoking the IumInvokeSecure-
Service and SkRetrieveMailbox functions in the context of the secure kernel.

SkRetrieveMailbox first invokes the SkpsReferenceTrustletByMailboxKey function. This function identifies the
trustlet whose mailboxes are protected by the mailbox key transferred from the normal environment. Skp-
sReferenceTrustletByMailboxKey searches through the attributes of running trustlets for this mailbox key. In
order to search the attributes of a given trustlet, SkpsReferenceTrustletByMailboxKey invokes the SkFindTrustle-
tAttribute function. This indicates that mailboxes keys are stored as trustlets’ attributes. Attributes of a given
trustlet store information associated with the trustlet and they are embedded in the executable implementing
the trustlet ([Mic17], section “Trustlet Attributes”, Table 3-5).

IfSkpsReferenceTrustletByMailboxKey cannot identify a trustlet, SkRetrieveMailbox returns the error code 0xC000-
0034 (OBJECT_NAME_NOT_FOUND).3 If SkpsReferenceTrustletByMailboxKey identifies a trustlet, SkRetrieveMail-
box allocates a buffer (ret_buf in Figure 3) and sets the value of the rbp register to 0 (rbp=0 in Figure 3). It then
loads into rbp the address stored at offset 0x8*ID+0x100 of the address stored in the rsi register. As mentioned
earlier, this address is presumably the address referencing the mailbox indexed by ID. The loading of the ad-
dress is implemented using the xchg instruction (xchg rbp, offset: 0x8*ID+0x100 in Figure 3). This instruction

3https://msdn.microsoft.com/en-us/library/cc704588.aspx [Retrieved: 19/4/2018]

https://msdn.microsoft.com/en-us/library/cc704588.aspx

exchanges the address stored at the offset 0x8*ID+0x100 of rsi with the value stored in rbp (i.e.,0). This effec-
tively zeroes out the value stored at the offset 0x8*ID+0x100 of rsi and populates rbp. As discussed earlier, this
indicates that the mailbox indexed by ID has been retrieved and may be populated again.

SkRetrieveMailbox then populates the newly allocated buffer with the data stored at offset 0x4 of rbp (ret_buf
← rbp in Figure 3). This is the data shared by the trustlet. SkRetrieveMailbox then issues a VTL return by
invoking SkCallNormalMode in order to switch to VTL 0. SkRetrieveMailbox passes the buffer populated with
shared trustlet data to VTL 0 (SkCallNormalMode: ret_buf in Figure 3). This provides the data shared by a trustlet
to the requesting entity that runs in the normal environment.

7 Secure Data Sharing: Secure Storage Blobs
The concept of secure storage blobs enables trustlets to share data between each other in a secure manner. A
secure storage blob is a memory region designated for storing shared data. The functionalities of the secure
storage blob mechanism are implemented in the IUM system calls IumSecureStoragePut and IumSecureStor-
ageGet. IumSecureStoragePut is used by trustlets for storing data in secure storage blobs. IumSecureStorageGet
is used by trustlets for retrieving data stored in secure storage blobs.

The storing data into, and retrieving data from, secure storage blobs is subject to access control. This is based
on an authentication value that trustlets accessing a secure storage blob have to provide. This authentication
value may be either a collaboration ID or a trustlet instance.

A trustlet sharing data via a secure storage blob may associate a collaboration ID with the blob. This allows
multiple trustlets that are in possession of this ID to access the blob. Same as the mailbox key, the collabo-
ration ID of a given trustlet is stored as part of the trustlet’s attributes ([Mic17], section “Trustlet Attributes”).
Alternatively to collaboration ID, a trustlet sharing data via a storage blobmay associate a trustlet instance with
the blob. This allows only the specific trustlet that is in possession of this instance to access the blob. A trustlet
instance is a form of trustlet identity. It is a 16-byte number generated by the secure kernel and is unique to
each instantiated trustlet ([Mic17], Section “Trustlet Identity”). When a trustlet is accessing a secure storage
blob, if no collaboration ID is provided, the trustlet instance is used for authentication.

Analysing the IumSecureStorageGet function allows for better understanding the way in which access to secure
storage blobs is secured. Figure 4 depicts a pseudo-code of the implementation of IumSecureStorageGet. The
second parameter of IumSecureStorageGet is the address of a buffer where the data retrieved from a secure
storage blob is to be stored (buf in Figure 4). The third parameter of IumSecureStorageGet is where the size of
shared data is to be stored (size in Figure 4).

IumSecureStorageGet first invokes the SkGetCollaborationId function. This function attempts to extract the col-
laboration ID from the attributes of the trustlet retrieving shared data (collabID in Figure 4) by invoking SkFind-
TrustletAttribute. If a collaboration ID is not present (if(res) and else in Figure 4), then the trustlet instance is
extracted. At the time of invoking SkGetCollaborationID, the trustlet instance is stored at offset 0x1D0 of the ad-
dress stored in the gs:8 register. SkGetCollaborationID then stores the extracted collaboration ID, or the trustlet
instance, into a data buffer. This buffer is referred to as the authentication data buffer in this work (auth in
Figure 4).

Once the authentication data buffer is populated, IumSecureStorageGet invokes SkGetBlob. This function first
iterates through an array that stores pointers to secure storage blobs (blob_array in Figure 4). The address of
this array is stored in a global variable of the secure kernel. Each element of the array stores a pointer to the
authentication value associated with each storage blob, that is, a collaboration ID or a trustlet instance (el->auth
in Figure 4). It also stores a pointer to the data stored in the blob.

During the iteration of the array of storage blobs, SkGetBlob compares the content of the previously populated
authentication buffer with the authentication value associated with each storage blob. If a match is found (au-
thenticated = 1 in Figure 4), SkGetBlob copies the data stored in the blob in the buffer for storing shared data
(memmove and buf in Figure 4). It also stores the size of the data in the variable for storing this size (size in Fig-
ure 4). The shared data is stored at offset 0x18 of the storage blob that SkGetBlob has granted access to (el+0x18

Figure 4: Pseudo-code of the implementation of IumSecureStorageGet

in Figure 4). The size of the shared data is stored at offset 0x14 of this blob (el+0x14 in Figure 4). The data buffer
storing the shared data, and the data size, are then returned to the trustlet invoking the IumSecureStorageGet
function.

References
[Mic17] Microsoft. Hypervisor Top Level Functional Specification. 2017. Version 5.0b; https://docs.microsoft.

com/en-us/virtualization/hyper-v-on-windows/reference/tlfs.

[YIRS17] Pavel Yosifovic, Alex Ionescu, Mark E. Russinovich, and David A. Solomon. Windows Internals, Part 1
and Part 2. 2017. Microsoft Press.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs

	Introduction
	Restrictions on Issuing VTL Calls
	Marshalling and Sanitization
	Access Control: Hypercalls
	Access Control: IUM System Calls
	Secure Data Sharing: Mailboxes
	Secure Data Sharing: Secure Storage Blobs

		2019-05-22T13:25:58+0100
	amilenkoski.client.ernw.net

