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The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung,
Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik - BSI).

Required Reading
In addition to referenced work, related work focussing onWindows Architecture and Virtual SecureMode (VSM),
part of the Windows Insight series, are relevant for understanding concepts and terms mentioned in this docu-
ment.

Technology Domain
The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

1 Introduction
This section described the process for VSM initialization activities performed by the Windows loader when Win-
dows 10 is booted. The Windows loader is the Windows boot entity that initializes VSM with respect to values
of configuration parameters. Figure 1 depicts the booting process of Windows 10 with VSM enabled. In this
process, each entity verifies the integrity of, and loads, the next entity in the booting chain. The Unified Extensi-
ble Firmware Interface (UEFI) firmware with Secure Boot enabled extends the trust chain securing the booting
process of Windows. It serves as the first root of trust in this chain. The UEFI firmware verifies the integrity of
and loads the boot manager. The following activities of the booting process can be structured into four phases:

• Phase 1: The boot manager loads the Windows loader. The Windows loader then loads the hypervisor
loader ([1] in Figure 1);

• Phase 2: The hypervisor loader loads the Hyper-V hypervisor. Once Hyper-V is loaded, execution control
is switched back to the Windows loader ([2] in Figure 1);

• Phase 3: The Windows loader loads the secure kernel ([3] in Figure 1);



• Phase 4: The Windows loader loads the normal kernel. The secure and the normal kernel load Windows
10 to its full extent, making it ready for use ([4] in Figure 1).
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Figure 1: The booting process of Windows 10 with VSM enabled

The Windows loader starts the VSM initialization process. On an UEFI-enabled platform, the Windows loader
is implemented in the %SystemRoot%\System32\winload.efi executable. The OslPrepareTarget function imple-
mented as part of the Windows loader performs VSM initialization activities. TO DO Section 2.1.1-Section 2.1.5
discuss such activities performed in relevant functions invoked by OslPrepareTarget: OslSetVsmPolicy, OslArch-
HypervisorSetup, OslArchHypercallSetup, OslFwProtectSecureBootVariables, and OslVsmSetup. These functions
are invoked by OslPrepareTarget in the order as presented in this section. When these functions are finished
executing, the Windows loader loads the secure and the normal kernel, which then instantiate Isolated User
Mode (IUM) applications. TO DO Section 2.1.6 discusses the requirements for an executable to be instantiated
as an IUM application.

2 OslSetVsmPolicy
OslSetVsmPolicy processes configuration parameters for enabling or disabling the core VSM entities and config-
uring the VSM features Hypervisor Code Integrity (HVCI) and Credential Guard. The parameters for configuring
HVCI and Credential Guard are stored in the system’s registry. Figure 2 depicts pseudo-code of the implemen-
tation of OslSetVsmPolicy.

OslSetVsmPolicy first invokes BlSecureBootGetBootPrivateVariable. This function evaluates whether the UEFI
variable VbsPolicyDisabled is defined. If defined, the core VSMentities and the VSM featureswill not be initialized.

If VbsPolicyDisabled is not set, OslSetVsmPolicy parses the registry key HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Control\DeviceGuard (see Figure 3). The OslGetVsmEnabled function evaluates the values
stored in the keysScenarios\HypervisorEnforcedCodeIntegrity\Enabled, Scenarios\HypervisorEnforcedCodeIntegrity



Figure 2: Pseudo-code of the implementation of OslSetVsmPolicy

Figure 3: The layout of HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\DeviceGuard

\Locked, EnableVirtualizationBasedSecurity, Locked, and HyperVVirtualizationBasedSecurityOptOut.

In addition to evaluating the above registry values, OslGetVsmEnabled evaluates the value of the BcdOSLoad-
erInteger_HypervisorLaunchType variable. This variable is stored in the system’s Boot Configuration Database
(BCD). It has to be set for the hypervisor to be loaded.1

When OslGetVsmEnabled is finished executing, OslSetVsmPolicy processes further configuration information.
This information is stored in the registry values RequirePlatformSecurityFeatures, Mandatory, and RequireMi-
crosoftSignedBootChain (see Figure 3 and the invocations of OslHiveReadWriteControlDword in Figure 2). In
addition, OslSetVsmPolicy invokes OslGetVbsHvciConfiguration. This function evaluates the HypervisorEnforced-
CodeIntegrity registry value. This value is used for initializing the VSM feature HVCI.

Once OslSetVsmPolicy is finished processing the configuration parameters stored in the registry, it passes these
parameters to the function BlVsmSetSystemPolicy. This function then evaluates the value stored in the Bc-
dOSLoaderInteger_SafeBoot variable. This variable is stored in the system’s BCD. It can have one of the fol-
lowing values: SafemodeMinimal, SafemodeNetwork, or SafemodeDsRepair.2. The VSM initialization procedure
continues only if BcdOSLoaderInteger_SafeBoot has the value of SafemodeMinimal.

BlVsmSetSystemPolicy then initializes the variable BlVsmpSystemPolicy. This variable stores the configuration
parameters previously read from the registry in the form of flags that are part of a bitmask value. Before storing

1https://msdn.microsoft.com/en-us/library/windows/desktop/aa362670(v=vs.85).aspx [Retrieved: 25/4/2018]
2https://msdn.microsoft.com/en-us/library/windows/desktop/aa362656(v=vs.85).aspx [Retrieved: 25/4/2018]
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them in BlVsmpSystemPolicy, BlVsmSetSystemPolicy compares the configuration parameters with configuration
parameters stored in the UEFI variable VbsPolicy. In case of a mismatch, the values stored in the UEFI variable
are used for initializing the core VSM entities and VSM features. This indicates that UEFI serves as the root
of trust for evaluating at system start-up the integrity of configuration parameters stored in the registry. The
configuration parameters stored in VbsPolicy are defined at the previous system shutdown and reflect the VSM
configuration at that time.

VbsPolicy is not defined when Secure Boot is disabled. In the scenario where the VSM features HVCI and Cre-
dential Guard are not configured to operate, a default set of configuration parameters are stored in BlVsmpSys-
temPolicy. These parameters are for initializing only the core VSM entities. This indicates that Secure Boot is
not a requirement for initializing these entities. Secure Boot is a requirement for initializing the VSM features
Credential Guard and HVCI.

In the scenario where Credential Guard, and/or HVCI are configured to be enabled, and Secure Boot is not
enabled, the core VSM entities, HVCI, and/or Credential Guard are not initialized.

Once populated with configuration parameters, BlVsmpSystemPolicy is stored in the LOADER_PARAMETER_-
BLOCK structure ([RSI12], Chapter 13). The Windows loader passes this structure to the normal and secure
kernel when loaded.

3 OslArchHypervisorSetup
OslArchHypervisorSetup loads and executes the hypervisor loader. This section discusses the integrity verifi-
cation process conducted as part of this activity. The integrity of the hypervisor loader executable is verified
using the Authenticode digital signing technology. The hypervisor loader has to be signed by Microsoft. This
section focuses on the cryptographic requirements that the digital Authenticode signature of the hypervisor
loader must fulfill such that the loader is considered authentic.

On anUEFI-enabled platform, the hypervisor loader is implemented in the%SystemRoot%\System32\hvloader.efi
executable (i.e., image). The Windows loader loads this executable in the ImgpLoadPEImage function. Figure 4
(label 1) depicts the functions preceding ImgpLoadPEImage. Once the hypervisor loader is loaded, it is exe-
cuted in the Archpx64TransferTo64BitApplicationAsm function. Figure 4 (label 2) depicts the functions preceding
Archpx64TransferTo64BitApplicationAsm.

Figure 4: Function stack: Windows loader loads the hypervisor loader

ImgpLoadPEImage invokes three functions that are relevant to the image verification process: ImgpGetScenari-
oFromImageFlags, ImgpGetHashAlgorithmForScenario, and ImgpValidateImageHash.



Before the function ImgpLoadPEImage initiates the image verification process it must identify and store the
signing requirements in configuration variables. This involves identifying and storing the required extended key
usage (EKUs) that have to be present in the certificate of the signer of the image. It also involves identifying and
storing the required hash algorithm used for signing certificates stored as part of the Authenticode signature.

ImgpGetScenarioFromImageFlags (see Figure 5, [1]) extracts a value indicating the required hash algorithm, such
as Secure Hash Algorithm (SHA)-1, and stores it as an integer value. This work refers to this integer value as
signing scenario. The signing scenario is stored as a flag that is part of a bitmask value. This work refers to
this bitmask value as image loading parameters.

Figure 5: Function stack: Windows loader loads the hypervisor loader

In addition to ImgpGetScenarioFromImageFlags, ImgpLoadPEImage extracts from the image loading parameters
a value indicating the EKUs that have to be present in the certificate of the signer of the image. This work
refers to this value as EKU flag and to the associated EKUs as required signer’s EKUs. A certificate’s EKUs
express the purposes for which the public key that is stored as part of certificate may be used. Code signing
certificates issued by Microsoft contain specific EKUs that describe the use of the certificates’ public keys for
verifying signatures of specific executables. For example, the 1.3.6.1.4.1.311.10.3.37 (Isolated User Mode) EKU
is stored in part of certificates used for verifying the signatures of IUM applications.

The function ImgpGetHashAlgorithmForScenario (see Figure 5, label [2]) maps the signing scenario extracted by
ImgpGetScenarioFromImageFlags to a code identifying the required hash algorithm. This work refers to this code
as hash code. For example, ImgpGetScenarioFromImageFlags extracts a signing scenario of 0 from the image
loading parameters of the hypervisor loader. ImgpGetHashAlgorithmForScenario maps the signing scenario of
0 to the hash code 0x800c if Secure Boot is enabled. This function maps the signing scenario of 0 to the hash
code 0x8004 if Secure Boot is disabled. The hash codes 0x8004 and 0x800c identify the SHA-1 and SHA-256 hash
algorithms, respectively.

The ImgpLoadPEImage function initiates the integrity verification process by invoking the ImgpValidateImageHash
function (see Figure 5, [3]). Based on the EKU flag, ImgpValidateImageHash stores the required signer’s EKUs,
extracted by ImgpLoadPEImage, in a variable. When the hypervisor loader is loaded, the required signer’s EKU
is 1.3.6.1.4.1.311.10.3.6. In addition, it stores the EKU 1.3.6.1.5.5.7.3.3 in this variable. This is an EKU that has to
be present in all code signing certificates issued by Microsoft. The hypervisor loader is signed by Microsoft.

TheMinCryptVerifyCertificateWithTrustedBootInfo function (see Figure 5, [3]), invoked by ImgpValidateImageHash,
verifieswhether the required signer’s EKUs are present in the certificate of the signer of the image being loaded.
If a required EKU is missing, MinCryptVerifyCertificateWithTrustedBootInfo returns the error code 0xc0000428
(INVALID_IMAGE_HASH).3 The certificate of the signer of the image being loaded is also verified against its root
certificate. The root certificate is hardcoded in theWindows loader executable. The fact that hardcoded contents

3https://msdn.microsoft.com/en-us/library/cc704588.aspx [Retrieved: 25/4/2018]
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of Windows loader executable are used for verification of the certificates of the signer of the hypervisor loader,
shows that the root of trust for verifying the integrity of the loader is the Windows loader itself.

We analyzed the possibility for mitigating the previously described integrity verification process by modifying
the system’s boot configuration. This can be done by issuing the command bcdedit /set nointegritychecks on.
The command sets the variable BcdLibraryBoolean_DisableIntegrityChecks to 1. This variable is stored in the
system’s BCD. We observed that when the hypervisor loader is loaded (see [1] in Figure 4), the value of BcdLi-
braryBoolean_DisableIntegrityChecks is evaluated, however, ignored. The integrity of the hypervisor loader is
always verified.

Once the hypervisor loader is loaded, execution control is transferred to it by executing Archpx64TransferTo64Bit-
ApplicationAsm (see [2] in Figure 4). The hypervisor loader then loads the Hyper-V executable (hvix64.exe or
hvax64.exe). The image integrity verification process implemented in the hypervisor loader is conceptually iden-
tical to the one implemented in the Windows loader. The hypervisor has to be signed by Microsoft. The integrity
of the Hyper-V executable is verified using the Authenticode digital signing technology.

4 OslArchHypercallSetup
OslArchHypercallSetupmaps a page aligned at a guest physical memory address to a guest virtual address. This
page is allocated to the partition hosting the normal and secure kernel and is populated by the hypervisor with
code. This code is for the kernels to invoke hypervisor services, referred to as hypercalls. The page storing the
code is referred to as the hypercall page.

OslArchHypercallSetup invokes BlMmMapPhysicalAddressEx. This function performs the mapping of the guest
physical address, at which the hypercall page is aligned, to a guest virtual address. Figure 6 depicts the guest
virtual address at which a hypercall page is aligned (fffff802’206ea000 in Figure 6).

Figure 6: Guest virtual address of a hypercall page

WhenOslArchHypercallSetup is finished executing, the guest virtual address of the hypercall page is stored in the
HvlpHypercallCodePageVa variable. Once the hypercall page is populated by Hyper-V, HvlpHypercallCodePageVa
is stored in the LOADER_PARAMETER_BLOCK structure ([RSI12], Chapter 13). This structure is passed to the
normal and secure kernel when they are loaded and executed. Figure 7 depicts the content of a populated
hypercall page, aligned at the virtual address fffff802’206ea000. It is extracted from the context of the normal
kernel, once it has been loaded by the Windows loader.

Figure 7: The content of a hypercall page

5 OslFwProtectSecureBootVariables
Among other parameters, OslFwProtectSecureBootVariables verifies configuration parameters of the VSM fea-
ture Credential Guard. The verified parameters are stored in the system’s registry, and their values are verified



against their counterparts stored as UEFI variables. In case of a mismatch, the values stored as UEFI vari-
ables are used for initialization of Credential Guard. The configuration parameters stored as UEFI variables are
written into the UEFI context at the first system shutdown after enabling VSM and reflect the Credential Guard
configuration at that time. UEFI serves as the root of trust for evaluating at system start-up the integrity of con-
figuration parameters of Credential Guard stored in the registry. Secure Boot is a requirement for Credential
Guard. If Secure Boot is not enabled, Credential Guard is not initialized (see Section 2)

OslFwProtectSecureBootVariables invokes the OslFwProtectSecConfigVars function. Figure 12 depicts pseudo-
code of the implementation of OslFwProtectSecConfigVars. OslFwProtectSecConfigVars evaluates the values of
the registry keys HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\RunasPPL and HKEY_LOCAL_-
MACHINE\SYSTEM\CurrentControlSet\Control\LSA\LsaCfgFlags against their counterparts stored as UEFI vari-
ables.

OslFwProtectSecConfigVars first evaluates the value stored in the key RunasPPL (OslHiveReadWriteControlDword
and EfiGetVariable in Figure 8). RunasPPL configures the Local Security Authority (LSA) process to be executed
under Protected Process Light (PPL) protection.4 PPL is a security mechanism protecting the memory space
of a process from accesses by other untrusted processes. If the RunasPPL registry key is set and Secure Boot
is enabled, the OslFwProtectSecConfigVars compares the value read from the registry with the UEFI variable
Kernel_Lsa_Ppl_Config.

Figure 8: Pseudo-code of the implementation of OslFwProtectSecConfigVars

OslFwProtectSecConfigVars then evaluates the value stored in the key LsaCfgFlags.5 Among other things, the
LsaCfgFlags registry key indicates if Credential Guard should be enabled. The value stored in the LsaCfgFlags
registry key (OslHiveReadWriteControlDword and getRegValue in Figure 8) is compared with the value stored in
the UEFI variable Kernel_Lsa_Cfg_Flags (EfiGetVariable and getEfiValue in Figure 8). The comparison is donewith
a logical OR operation ( getRegValue | getEfiValue in Figure 8). In addition, OslFwProtectSecConfigVars evaluates
the value of theUEFI variableKernel_Lsa_Cfg_Flags_Cleared. If this variable is set, the configuration parameters
of Credential Guard will be cleared and Credential Guard will not be initialized.

4https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/configuring-additional-lsa-
protection [Retrieved: 25/4/2018]

5https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-manage [Retrieved:
25/4/2018]
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6 OslVsmSetup
Figure 9 depicts pseudo-code of the implementation of OslPrepareTarget invoking the OslVsmSetup function.
The primary task of OslVsmSetup is to load and execute the secure kernel and its modules. After the secure
kernel is loaded, the Windows loader loads the normal kernel. The secure and the normal kernel then load
Windows 10 to its full extent, making it ready for use (see Figure 1).

Figure 9: Pseudo-code of the implementation of OslPrepareTarget invoking OslVsmSetup

The secure kernel is implemented in the %SystemRoot%\System32\securekernel.exe executable. The secure
kernel is loaded if the 11-th bit in the BlVsmpSystemPolicy variable is not set (bittest and 0xBu in Figure 9).
In addition, the HvlpResourceInitialized variable needs to be set. HvlpResourceInitialized is set only when the
hypervisor loader has loaded the Hyper-V hypervisor. If this variable is not set, for the secure kernel to be
loaded, the presence of Hyper-V has to be determined. Hyper-V sets the 31-st bit of the value stored in the ecx
register ([Mic17], Section 2.2). The HviIsHypervisorMicrosoftCompatible function verifies that this bit is set.

OslVsmSetup invokes the OslpVsmLoadModules and OslLoadImage functions to load and verify the integrity of the
securekernel.exe as well as its required modules. The integrity of securekernel.exe and its required modules is
verified using the Authenticode digital signing technology. The secure kernel has to be signed by Microsoft. The
verification of cryptographic requirements, such as EKUs that have to be present in the certificate of the signer
of the image, is conceptually identical to the one described in Section 3.

BeforeOslpVsmLoadModules is invoked, OslVsmSetup evaluates the value stored in theBCDE_OSLOADER_TYPE_-
VSM_LAUNCH_TYPE variable. This variable is stored in the system’s BCD. It can have the value Off or Auto.
OslpVsmLoadModules is invoked only if BCDE_OSLOADER_TYPE_VSM_LAUNCH_TYPE has the value of Auto.

7 Instantiation of IUM Applications
Once the normal and the secure kernel are loaded and executed, they instantiate IUMapplications (i.e., trustlets).
For an IUM application to be instantiated, the normal kernel invokes the NtCreateUserProcess function. Among
other things, this function initializes relevant kernel structures for process management, such as the structure
of type EPROCESS. This structure contains relevant process information, such as process ID. NtCreateUserPro-
cess collaborates with the secure kernel to finish instantiating the IUM application.

Third parties cannot instantiate an application as a trustlet without fulfilling certain requirements. The use of
functions implemented as part of the Windows API and exposed to third parties, such as CreateUserProcess, do
not instantiate executables as IUM applications. This is because such functions do not set a concrete flag used
by the normal kernel for instantiating an executable as an IUM application. This flag is referred to as the IUM
application flag in this work. In order to instantiate an application as an IUM application, third parties need to
implement custom executable loaders that directly invoke NtCreateUserProcess such that the IUM application
flag is set.

In addition to the IUM application flag being set, for an application to be instantiated as a trustlet, it has to
be properly signed. Each executable implementing an IUM application has to be signed by Microsoft using
the Authenticode digital signing technology. The certificate issued by the signer of the IUM application has to
possess the following EKUs (textual EKU descriptions provided in round brackets, see Section 3):

• 1.3.6.1.5.5.7.3.3 (Code Signing)



• 1.3.6.1.4.1.311.10.3.6 (Windows System Component Verification)

• 1.3.6.1.4.1.311.10.3.37 (Isolated User Mode)

• 1.3.6.1.4.1.311.10.3.24 (Protected Process Verification)

The EKU Isolated User Mode is used specifically for marking certificates that can be used only for verifying
signatures of executables implementing IUM applications. As part of the Authenticode signature verification
process of a given IUM application, the EKUs stored in the certificate used for signing the application are eval-
uated against EKUs hardcoded in the ci.dll library file. In case of a mismatch, the application is considered not
authentic.
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