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This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author (=),

The content of this work has been created in the course of the project named "Studie zu Systemaufbau, Protokollierung,
Hartung und Sicherheitsfunktionen in Windows 10 (SiSyPHuUS Win10)’ (ger.) - 'Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security [ger., Bundesamt fiir Sicherheit in der Informationstechnik - BSI).

Required Reading

In addition to referenced work, related work focussing on Windows Architecture and Virtual Secure Mode (VSM),
part of the Windows Insight series, are relevant for understanding concepts and terms mentioned in this docu-
ment.

Technology Domain

The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB].

1 Introduction

A VSM-enabled Windows environment implements multiple communication interfaces:

¢ |solated User Mode (IUM] system calls: Interface between IUM applications and the secure kernel, where
the secure kernel provides services to I[UM applications (Section {;

* normal-mode services: Interface between the secure and the normal kernel, where the normal kernel
provides services to the secure kernel (Section E];

e secure services: Interface between the secure and the normal kernel, where the secure kernel provides
services to the normal kernel (Section @]; and

¢ hypercalls: Interface between the normal and the secure kernel, and the hypervisor, where the hypervisor
provides services to the normal and the secure kernel (Section E].

In addition to the interfaces mentioned above, there is the traditional non-VSM-specific system call interface
enabling communication between user applications and the normal kernel. Section @ focuses on the execution
path of IUM system calls, comparing it with that of traditional system calls.
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2 |IUM System Calls

IUM system calls implement services that the secure kernel exposes to IUM applications. This includes critical
system services enabling the operation of IUM applications, such as memory management services.

The execution path of IUM system calls is conceptually identical to that of traditional system calls. An IUM
application executes IUM system calls by invoking functions implemented in the [UMDLL.dll library file. These
functions have names starting with lum and implement execution context switching between IUM applications
and the secure kernel. Figure|l|depicts the implementation of the lumPostMailbox IUM system call in [UMDLL.dIL.
For comparison purposes, Figure ] depicts the implementation of the traditional system call NtCreateUserPro-
cess in the NTDLL.dll library file.

iumdll!IumPostMailbox:
mov rie, rcx

mov eax, 800000Ah
syscall

ret

[CRF NN

Figure 1: Implementation of lumPostMailbox in IUMDLL.dLL

ntdll!NtCreateUserProcess

mov rle, rcx

mov eax,0Clh

test byte ptr [SharedUserData+0x308],1
[...1

ntdll!NtCreateUserProcess+0x12:
syscall

ret

[...1

D OmNOU R WN

=

Figure 2: Implementation of NtCreateUserProcess in NTDLL.dLl

Same as traditional system calls, each IUM system call can be uniquely identified by a system service index.
Indexes specifying IUM system calls have the highest bit set. An example is 0x800000A, a system service index
specifying the lumPostMailbox IUM system call (see line 3 in Figure ]. Once the system service index is set,
the sysEall instruction switches the execution context to the secure kernel (see line 4 in Figure [|| and line 8 in
Figure f).

Once the execution context is switched to the secure kernel, it invokes the KiSystemCallé4 routine. The address
of this function is stored in the model-specific register [MSR] 0xC0000082 when the Shvip/nitProcessor function
is invoked (see Figure E]. This function is invoked during the initialization of the secure kernel. For comparison
purposes, Figure i depicts the use of the model-specific register (MSR) 0xC0000082 for the same purpose in
the context of traditional system calls. The KilnitializeBootStructures is invoked during the initialization of the
normal kernel.

ShvlpInitProcessor( [...] )
{

[...]
writemsr(0xC0000082, KiSystemCall64);

[...]
}

Figure 3: MSR 0xC0000082 storing KiSystemCallé4 (secure kernel)

KiSystemCallé4 routes invocations of a given [UM system call to the corresponding handler function implement-
ing the actual service functionality. Figure E depicts the implementation of KiSystemCallé4. This function first
evaluates whether the highest bit of the system service index is set (see line 5 in Figure ). If set, KiSystemCallé4
loads the address of the kernel structure SkiSecureServiceTable (see line 13 in Figure ). This structure is an
array of functions implementing the service functionalities of IUM system calls. Figure B depicts the imple-
mentation of SkiSecureServiceTable. After loadingSkiSecureServiceTable, KiSystemCallé4 executes the handler



KiInitializeBootStructures( [...] )
{

[...]
_writemsr(0xC0000082, KiSystemCall64);

[...]

Figure 4: MSR 0xC0000082 storing KiSystemCallé4 (normal kernel)

1 securekernel!KiSystemCallé4:

2 [...]

3 mov ebx,eax

4 and eax, OFFFh

5 test ebx,8000008h

6 je securekernel!KiSystemServiceStart+0x28

I

8 securekernel!KiSystemServiceStart+0x13:

9 cmp eax,dword ptr [securekernel!SkiSecureServicelLimit]
(

jae securekernel!KiSystemServiceExit+0x145
12 securekernel!KiSystemServiceStart+0x1f:
13 lea rie, [securekernel!skisecureserviceTable]

14 jmp securekernel!KiSystemServiceStart+ex3b

16 securekernel!KiSystemServiceStart+0x28:

17 lea ri@, [securekernel!IumSyscallDispatchTable]
18 cmp eax,dword ptr [securekernel!IumSyscallDescriptorLimit]
19 jae securekernel!KiSystemServiceExit+0x145

20
21 securekernel!KiSystemServiceStart+0x3b:
22 movsxd rll,dword ptr [rle+rax*4]

23 mov rax,rll

24 sar

25 add

26 nop dword ptr [rax]

27 and eax,0Fh

28 sub eax,4

29 jle securekernel!KiSystemServiceCopyEnd

30 [...]

31  securekernel!KiSystemServiceCopyEnd:
32 mov eax,ebx

33 call rie

34 [...]

Figure 5: The implementation of KiSystemCall64

functioE indexed by the system service index identifying the invoked IUM system call (see line 22 and line 33 in
Figure B).

If the highest bit of the system service index is not set, that is, if the evaluation at line 5 in Figure E fails, the
KiSystemCallé4 routes an invocation of a normal-mode service. Section E discusses normal-mode services.

Since only IUM applications may invoke IUM system calls, the conditions for instantiating IUM applications by
third parties apply also to invoking IUM system calls by these parties.

3 Hypercalls

Hypercalls implement services that the hypervisor exposes to partitions. This involves critical system services
enabling the operation of virtual systems, such as memory management services. The hypercalls implemented
by the Hyper-V hypervisor are listed in ([Mic17], Appendix A). Each Hyper-V hypercall can be uniquely identified
by an identification number, referred to as a call code.

Partitions can invoke hypercalls only from kernel-mode. In a VSM-enabled Windows environment, this includes
the execution context of the normal and the secure kernel. The winhv and winhvr drivers implement wrapper
functions enabling the straightforward invocation of hypercalls. For example, the functions implement as-
signment of call codes and management of hypercall input and output values. The activities that need to be
performed for a Hyper-V hypercall to be executed are documented in ([Mic17], Section 3).



[...]

TABLERO: 88ea280148885808 SkiSecureServiceTable dq offset IumCreateSecureDevice
TABLERO:B@eeeeal40089000 ; DATA XREF: SkiSystemStartupADE?o
TABLERO:@@c88e814888968606 ; KiSystemCall64+C3?o

TABLERO: 8800888148889808 g offset| IumCreateSecureSection
TABLERO:@eeoe00l1d8089%018 g offset| IumCrypto

TABLERO: @@e0eee1480589018 g offset| IumDmaMapMemory

TABLERO: 8@00009148089820 offset| IumFlushSecureSectionBuffers
TABLERD:B8@eae80148889828 offset| IumGetDmaEnabler

TABLERO: @@eaeee14ee89230 offset| IumGetExposedSecureSection
TABLERO:@@0ee001480890838 offset| IumGetIdk
TABLERO:eeeoe08l140089848 offset| IumMapSecurelo
TABLERO:B8@easea1488898438 offset| IumOpenSecureSection

TABLERO: 9000009148889650 offset| IumPostMailbox

TABLERC: @eeeee814e089858 offset| IumProtectSecurelo
TABLERO:@eeeees148889860 offset| IumQuerySecureDeviceInformation
TABLERO:B8@eee20148089868 offset| IumSecureStorageGet
TABLERO:B@oaoea148083870
TABLERO:@@080881480526878
TABLERO:B8@ea8ea1488898588

O 6 .60 0

offset| IumSecureStoragePut
offset| IumUnmapSecurelo
offset| IumUpdateSecureDeviceState

O 60 6 00 .60 6
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[...]

Figure 6: The implementation of SkiSecureServiceTable

A crucial prerequisite for Hyper-V hypercalls to be invoked is the existence of the hypercall page in the context
of the partition. A hypercall page is a memory page that stores code for invoking hypercalls as per the Hyper-V
specification. This page is exposed by the hypervisor to each partition. During the initialization process, each
partition reserves a memory page and stores its guest physical address (GPA) in the MSR 0x40000001 ([Mic17],
Section 3.13). Hyper-V then populates this page with code. A populated hypercall page cannot be modified in
order to prevent unauthorized modifications of the code stored in it. Figure ﬂ depicts the contents of a MSR
0x40000001.

[...1

kd> rdmsr 8x488e8e81

msr[46000601] =|06000000° 08262003
[...1

Figure 7: The contents of a MSR 0x40000001

When the hypercall page is loaded in the context of a partition, the kernel running in the partition can invoke
hypercalls. This typically involves activities such as loading the hypercall page, allocating memory buffers for
hypercall input and output values, and setting these values. Finally, the code stored in the hypercall page is
executed so that the execution context is switched to the hypervisor. For example, the WinHvpHypercall function
of the winhvr driver results in the execution of code stored in the hypercall page.

Figure E depicts the contents of a hypercall page accessed in the WinHvpHypercall function. It contains page-
aligned code for invoking hypercalls, padded with “no operation” (nop) instructions. The page contains several
sets of instructions ending with the instruction sequence “vmcall ret”. The vmcall instruction is implemented
in Intel processors and it switches execution context to the hypervisor.

The sets of instructions stored in the hypercall page can be understood as trampolines for abstracting the
switching of execution context to the hypervisor in different scenarios. These trampolines accommodate the
execution of any hypercall, and of the hypercalls with call codes 0x77 and 0x12, on both 32-bit and 64-bit plat-
forms. The instructions preceding the vmcallinstructions (if any) save the contents of the eax, or the rcx, register
and store a hypercall call code in this register. The eax, or the rcx, register stores a hypercall call code on 32-bit
and 64-bit platforms, respectively. The use of specific registers for storing hypercall input and output values,

as well as call codes, is documented in ([Mic17], Section 3.7) and ([Mic17], Section 3.8).

The sets of instructions in the hypercall page where the values Ox77 and 0x72 are stored in the eax, or the



[...]

kd> u fffffsee b3348000 L20

fffff800° b3948000 ofolcl vmcall
FFFFf800° b3948083 c3 ret

FFFf£800° 3948004 8bc8 [mov  ecx,eax|
fffff8ee b3948066 b811000080 mov eax,11h
fffffsee b3g4geeb efelcl vmcall

fffffsee b3g4geee c3 ret

fffff800° b394800f 488bcl [mov rax,rex|
FFFff800° b3948012 48c7c111806000 |mov rex,11h
fFFff800° b3948019 Bfelcl vmcall
fffff8ee’ b39480lc c3 ret

fffffgee b394801d 8bc8 [mov  ecx,eax|
fffffsee b3948elf bsl2eeeeee mov eax,12h
fffff800° b3948024 ofolcl vmcall

fFFff800° b3948027 c3 ret

FFFFF800 b3948028 488bcl [mov  rax,rex|
fffff8ee b394802b 48c7c112806008 |mov rcx,12h
fffff8ee b3948032 @felcl vmcall

fffffsee b3948035 c3 ret

fFfff800° b3948036 90 nop

fffff800° b3948037 90 nop

FFFff800° b3948038 90 nop

[...]

Figure 8: The contents of a hypercall page

rcx, register are used for invoking the hypercalls with call codes 0x77 and 0x72. These hypercalls are used for
invoking normal-mode and secure services. Section @ and Section E discuss these services. The first set of
instructions, containing only the “vmcall ret” instruction sequence, is used for invoking any other hypercall.

When the vmcall instruction is executed, the execution context is switched to Hyper-V. The hypervisor then
performs access control checks. If a given hypercall is protected by access control, the partition invoking it has
to possess the required privilege (Mic17], Section 3.11). If the hypercall is to be executed, Hyper-V loads an
array that contains entries of a fixed size. Each entry is indexed by a hypercall call code and contains a pointer to
a function implementing the functionality of the hypercall identified by the call code. Hyper-V then executes the
function indexed by the call code of the invoked hypercall. Afterthis, the execution context is switched back to the
kernel that has invoked the hypercall. Figure B depicts a portion of the array containing functions implementing
hypercall functionalities indexed by call codes (see, for example, sub_FFFFF80000212908 [function] and 5Dh
[call code] in Figure E]. This array is implemented as part of hvixé4.exe.

[...]

CONST:FFFFF80000C208B8 dg offset sub_FFFFF800002129D8
CONST: FFFFF80000C008C0 db 5Dh ; ]
CONST:FFFFF80000C008C1 db )

CONST:FFFFF80080C0e08C2 db -]

CONST: FFFFF8@000C008C3 db %]

CONST:FFFFF80088CE08C4 db 8

CONST: FFFFF80000C008C5 db ]

[-..1

CONST: FFFFF800082C008CF db 2]

CONST: FFFFF80000C008D0 dg offset sub_FFFFFSBBBBZBF034
CONST: FFFFF82082C2e08D8 db SEh ; *

CONST: FFFFF80000C008D9 db e

CONST:FFFFF8208@CER8DA db ]

CONST: FFFFF800080C008DB db -]

CONST: FFFFF8e000Ce08DC db 1eh

CONST: FFFFF80080Ce08DD db -]

[-..1

Figure 9: Functions implementing hypercall functionalities



4 Secure Services

The secure kernel exposes services to the normal kernel, referred to as secure services in this work. They
implement security-critical kernel operations that are executed in the secure, isolated environment. For a
secure service to be invoked by the normal kernel, the kernel has to switch from Virtual Trust Level (VTL) 0 to
VTL 1. This process is known as VTL call. In its essence, a VTL call is an execution context switch from a lower
to a higher VTL. ([Mic17], Section 15.6.1) provides details on the VTL call process.

VTL calls are performed by the normal kernel issuing a hypercall with call code 0x77 - the HvCallVtiCall hy-
percall ([Mic17], Section 17). The normal kernel issues HvCallVtiCall by invoking the function chain VslpEnteri-
umSecureMode = HvlSwitchToVsmVtl1 = HvipVsmVt(CallVa. The VslpEnterlumSecureMode function is invoked in
the functions implemented as part of the normal kernel that require a secure service. HvlpVsmVt(CallVa is a
variable storing a function referencing the trampoline of the hypercall page for invoking the hypercall with call
code Ox11. Figure [1J depicts this trampoline executed in the Hv{SwitchToVsmVtl1 function.

[---]

[nt!HvISwitchTovsmvtl1+0xas:

fffffge2" 289cc633 ffde call rax

0: kd> t

fffff8e2" 2873fo0f 488bcl mov rax,rcx
8: kd> p

fffff8e2° 2873012 48c7c1118000008 |mov recx,11h
@: kd> p

fffffge2" 2873fo19 efelcl vmcall

[...]

Figure 10: Issuing a VTL call

Each secure service can be uniquely identified by an identification number, referred to as secure service call
number (SSCN). In the context of the normal kernel, a SSCN is specified as the second parameter of VslpEn-
terlumSecureMode. The SSCN is then passed to the secure kernel as part of a data structure stored in the rdx
register when a VTL call is issued. This structure is referred to as the VTL call data structure in this work. The
table presented in the section ‘Secure Services’ of the Appendix lists the functions implemented as part of the
normal kernel (column ‘Function’) that invoke secure services identified by SSCNs (column " SSCN’).

In addition to secure services, a VTL call supports the specification of other operations that can be executed by
the secure kernel. Each operation is uniquely identified by an operation code, which is stored in the VTL call
data structure. The operations are:

e managing the execution of a thread relevant to the secure kernel (operation code - 0x0): Section E dis-
cusses more on this topic;

* invocation of a secure service (operation code - 0x07);

e flushing the transaction lookaside buffer (TLB) (operation code - 0x02): With respect to the design of VSM,
the flushing of the TLB is considered a security-critical activity and is therefore executed in the secure
environment. The TLB is involved in translations between virtual and physical addresses.

Figure [ 1| depicts the contents of the VTL call data structure when a VTL call is issued. In Figure , 0x07 is an
operation code, indicating invocation of a secure service, and 0xD17 is a SSCN.

In the context of the secure kernel, a VTL call is processed in the function lum/nvokeSecureService, invoked by
the SkCallNormalMode function. luminvokeSecureService extracts the SSCN from the VTL call data structure
and invokes the function(s) implementing the actual secure service identified by the SSCN. The secure kernel
then continues the execution of SkCallNormalMode. This function invokes the trampoline of the hypercall page
for invoking the hypercall with call code 0x72. This is done for returning relevant data to the normal kernel and
switching the execution context back to VTL 0. The hypercall with call code 0x12 is the HvCallVtlReturn hypercall
([Mic17], Section 17). It is used for switching from a higher to a lower VTL. This process is opposite to a VTL
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5: kd> db @rdx

ffffe201 lcfcfbee EBG EB@ 00 00 00 Do-82 ©C OO OO 00 €0 BB B8 ......... i 000000
ffffe28l 1cfcfble ©© 60 60 6@ 69 80 0 P0-00 0 B8 00 00 B8 88 80 ................
ffffe281 1cfcfb2e ©@ 92 60 2P 0P 80 PO PO-52 9O 08 P96 0 88 8D 80 ................
ffffe201 1cfcfb3e ©© @2 80 ©0 0P 80 ©0 PO-00 0O 6O 90 00 08 80 @0 ................
ffffe201 1cfcfbde ©6 ©2 60 00 60 @6 0O PO-00 €0 60 0O 00 00 80 80 ...........c....
ffffe20l 1lcfcfbSe ©0 0@ €0 00 09 @0 20 Pe-P0 € 00 00 @2 P8 8P 8P ........ovvavees
ffffe20l 1cfcfbée ©0 @@ €0 o0 60 e0 00 ©0-4f 40 48 8d 55 38 41 b0 ........ O@H.UBA.
ffffe201 1cfcfb7@ af e4 b7 2b 8f dd ff ff-57 48 Of b7 48 34 66 89 ...+....W@..Haf.

[...]

Figure 11: Contents of the VTL call data structure

call and is referred to as VTL return. ([Mic17], Section 15.7.1) provides details on the VTL return process. In
SkCallNormalMode, the trampoline for invoking HvCallVtiReturn is stored in the ShvipVtlReturn variable (see Fig-
ure @]. Thisvariable is populated during the initialization of the secure kernel, in the Shvip/nitializeVsmCodeArea
function.

-

.text:000000014005FBS5 mov €r2;. rdx
.text:000000014065FB98 mov ecx, 1
.text:000080014085FBID

.text:000000014005FBID InvokeReturnHcall:

.text:000000014005FBD [call cs:ShvlpVtlReturn

[---1

Figure 12: Execution of the HvCallVtlReturn hypercall in SkCallNormalMode

5 Normal-mode Services

The normal kernel exposes services to the secure kernel, referred to as normal-mode services in this work.
These services implement kernel operations that are not implemented by the secure kernel, however, are nec-
essary for this kernel or the IUM applications that it hosts to function. The secure kernel implements only a
limited set of security-critical functionalities. This is because this kernel is designed to expose a minimal in-
terface. It has a significantly smaller codebase than the one of the normal kernel. This reduces the risk of
breaches due to design or implementation errors.

Example normal-mode services include semaphore and process management, and registry and filesystem in-
put/output. The traditional system calls implemented as part of the normal kernel are invoked as normal-mode
services by the secure kernel.

In the context of the secure kernel, normal-mode services that are implemented as system calls in the normal
kernel, are invoked by executing functions with names starting with Nt or Zw. These functions may be invoked
by IUM applications requesting kernel functionalities or the secure kernel itself. The functions with names
starting with Zw invoke the KiServicelnternal function. The system service index is stored in the eax register.
Figure [13 depicts the invocation of KiServicelnternal by the function ZwTerminateProcess such that the system
service index is 0x2C. This is the index of the NtTerminateProcess system call implemented in the normal kernel.

KiServicelnternal invokes KiSystemServiceStart, a code segment of the KiSystemCallé4 function (see Figure E
Section E]. In KiSystemServiceStart, the secure kernel loads the variable lumSyscallDispatchTable (which is dif-
ferent than the one in the normal kernel). This is because the highest bit of the system service index is set (see
line 17 in Figure E]. lumSyscallDispatchTable potentially contains pointers to functions implemented as part of
the lumSyscallDispEntries array. lumSyscallDispEntries stores pointers to functions with prefix Nt, indexed by a
system service index. Figure [14 depicts a portion of the contents of lumSyscallDispEntries.



1 ZwTerminateProcess proc near
2

3 [...]

4

5 mov eax, 2Ch

6 jmp KiserviceInternal

7 retn

8 ZwTerminateProcess endp

Figure 13: ZwTerminateProcess invoking KiServicelnternal

[zl

.data:e0ees0014007858¢ IumSyscallDispEntries dq offset NtWorkerFactoryWorkerReady
.data:0000000140078580

.data:B6800000140078588

.data:0000000140078588 db 1

.data:0000000140078589 db ]

[...]

.data:00e000014007858F db ]

.data:ee00000140078598 dq offset NtWaitForSingleObject
.data:0000000140078598 db 4

.data:00e0000140078598 db ]

BT

.data:0006BR14007859F db @

_data:80080091400785A8 |dq offset NtReleaseSemaphore ‘
.data:B68000001400785A8 db 8Ah

.data:00000001400785A% db ]

[...]

Figure 14: Contents of lumSyscallDispEntries

After loading lumSyscallDispatchTable, KiSystemServiceStart invokes the function with prefix Nt indexed by the
system service index stored in the eax register. The functions with prefix Nt invoke stubs for executing normal-
mode services. These stubs are implemented in functions with names starting with Nk. For example, NtSetEvent
invokes NkSetEvent.

Figure [19 depicts the process of executing normal-mode services by functions with prefix Nk. Figure [1§ depicts
the concrete example of NkTerminateProcess executing the system call NtTerminateProcess as a normal-mode
service. NkTerminateProcess invokes lumGenericSyscall such that the first parameter is a system service in-
dex with the highest bit set. NkTerminateProcess sets the first parameter of lumGenericSyscall to 0x8000002C.
0X2C is the system service index of the NtTerminateProcess system call implemented in the normal kernel. lum-
GenericSyscallinvokes SkSyscall such that its first parameter is the system service index (SysCalllD in Figure ].
SkSyscall sets the highest bit of the system service index to 0 (SysCalllD&0x7FFFFFFF in Figure ]. The system
service index is then passed to the SkCallNormalMode function as part of a data structure (param in Figure ].

SkCallNormalMode executes a VTL return; that is, it switches from VTL 1 to VTL 0 (see Section @]. SkCallNor-
malMode passes the data structure provided by SkSyscallto VTL 0 (param in Figure ]. This structure is referred
to as the VTL return data structure in this work. SkCallNormalMode executes a VTL return by invoking the hy-
percall with call code 0x72 (see Section ).

In the context of the normal kernel, normal-mode services requested by IUM applications or by the secure
kernel are handled in the VslpEnterlumSecureMode function. The VslpDispatchlumSyscall function, invoked by
VslpEnterlumSecureMode, executes normal-mode services implemented as system calls in the normal kernel.
The PsDispatchlumService function, invoked by VslpEnterlumSecureMode, executes other normal-mode services.

VslpDispatchlumSyscall and PsDispatchlumService are executed in the context of worker threads. These threads
act as agents of entities running in the secure environment for executing normal-mode services. Normal-mode
services requested by the secure kernel are executed in the context of a thread owned by the Secure System
process. Normal-mode services requested by IUM applications are executed in the context of threads owned by
these applications. Figure [14 depicts the invocation of VslpDispatchlumSyscall in the context of threads owned



MkTerminateProcess ( [...] )

{

return |IumGenericsyscall(exgoedeszl, [...]1 );

3

IumGaenericsyscall{SysCallin, [...] )

{

Eiad

return SkSyscall{SysCallip, [...] );
SkSyscall{SysCallID, [...] }
{

SysCalllD = SysCallID & @xiFFFFFFF;

Figure 15: Executing normal-mode services by functions with prefix Nk (NkTerminateProcess)

by the Secure System process ([7] in Figure @] and the Biolso.exe IUM application ([2] in Figure IE]. Next, the
operation of the worker thread owned by Biolso.exe is discussed.

Breakpaint @ hit

FRFF807 Ta7616e0 C6 push  rsd

a: kd> Ithread

THREAD FFffbc820a60034@ C(id 9eed.009s Teb: DPEEEOBDOENEEER Wini2Thread: GOEEHUECEEEDEENE RUNNING on procassor @
Wot_impersonating

Ionning Frocess Ffbci20a520040 Image: System

Attached Process Ffffbc8atcfelds Image: Secure System

[---1

Priority 31 BasePriority & PriorityDecrement B ToPriority 2 PegePriority 5

Child-sp Fataddr : Args to Child : Call Site

FFFFFEA° eh3bhdad FFFFF8A0° fUfbSA6T : FFFFfRE2" fellapa GAG0AERA’AEARRAA1 FFFFbra2 0a6993dn FFFfaR2 eepenond : [nt!vslpDispatchIumsyscall

[---
Frifafee eb3bbbda FFFFFB02 fdfdadse : FFFFBO2° fel5d180 fITfbcB2 9a650340 FIFFFBO2 fdeb?47c FRFFFFFF @@B57cS ; Int!PspSystenThresdStartup+indl]
fFEfEfE0 eblbbbed GDOREO00 000000 @ fFFFEFED eblbcooo ffFEfE0° cbIbCORO 0OODDDOR" RORODDNE Q202000E° G3DERRG : |nt!KiSTartSystemThread+@xls

(21

Breakpoint 0 hit

fffffae2" fdf616ea 56 push ref

3: kd» !thread

THAEAD FffbcB2aPES3088 Cid @0bc.80cd Teb: @OBBOBATeecchB®d Wind2Thread: BAARGRBGHAGOEBA RUNNING on processor 3
Hot impersonating

[Gwning Process TTTbcalasecasnd Tmage: Biolso.exe|

[--]

priority & Basepriority B PriorityDacrement € Iopriority 2 Pagepriority s

child-sp Retaddr 3 to child : call site

Fiffafen ef2217e8 £Hfffena" fdfbsast : a1 FFffbcB2" aBa53880 Ffffbca2’ a2e54888 :[nt!vslpDispatchIumSyscall
(-1

FF1fBfE0 ef221a30 BORO7Ffb 5345570 3’ 00A00AAA DABGOARD" B 3 BODRRGAE" HRGANEGR CADEAIRA" BEARR StartUserThreadReturn|
20900287 eeactalsd 600" Ae0RRERR ; 06" A2000000 D0RG0RRD" i 009 B20A0000° DREDEE0A 2EROPERD DEARERER : [ntdll!RtlUserThreadStart

Figure 16: Invocation of VslpDispatchlumSyscall

The thread enters the VslpEnterlumSecureMode function. This function issues VTL calls in a loop, by executing
the hypercall with call code Ox77. These VTL calls are issued by invoking HviSwitchToVsmVtl1, such that the
SSCN is set to 0 and the operation code is set to 0x0 (see Section ). At a given point in time, the data returned
from the VTL call contains either a system service index or a normal-mode service code. Normal-mode service
codes are used for uniquely identifying normal-mode services that are not implemented as system calls in the
normal kernel.

If the returned data contains a system service index, the VslpDispatchlumSyscall function invokes the corre-
sponding system service routine. If the returned data contains a normal-mode service code, the PsDispatchl-



umService function invokes the corresponding normal service. PsDispatchlumService implements multiple con-
dition blocks for invoking specific functions for a given normal service code.

Figure Iﬁ depicts the presence of a system service index in the data returned from a VTL call issued in VslpEn-
terlumSecureMode. The system service index 0x48, which specifies the NtCreateEvent system call, results in
VslpDispatchlumSyscall invoking the NtCreateEvent system service routine. This routine is implemented in the
normal kernel.
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Breakpoint @ hit
nt!VslpDispatchIumSyscall
fffff800 c3b636ed 56 push rsi

L]

6: kd> pc

nt!vslpDispatchIumSyscall+@x32

fffff8ee c3b63712 41ffd2 call ria
6: kd> t

nt!NtCreateEvent:

fffff2300° c3ed6e4@ 48895c24a8 mov guword ptr [rsp+8],rbx

Figure 17: VslpDispatchlumSyscall invoking the NtCreateEvent system call

Once a normal-mode service is handled in VslpDispatchlumSyscall or PsDispatchlumService, the loop issuing VTL
calls with operation code 0x0 is continued. At some point, the worker threads owned by Biolso.exe is put to sleep
and terminated.



Appendix

Secure Services

Function SSCN
DbgkCopyProcessDebugPort 0xB
HvlCollectLivedump OxE?9
HvlinitializeProcessor 0x2
HvINotifyDebugDeviceAvailable O0xFO
HvlpGetSecurePagelist 0x802
HvlPrepareForRootCrashdump OxEC
HvlPrepareForSecureHibernate OxEB
HvlpStartSecurePagelistlteration 0x800
KeBalanceSetManager 0xD1
KeCopyPrivilegedPage OxE4
KeRequestTerminationThread 0x8
KeReservePrivilegedPages 0xD2
KeSecureProcess 0x6
KeSetPagePrivilege OxE6/0XE3/0XES
KeUnsecureProcess 0x1B
MiApplyDynamicRelocations 0xD3
MiFlushEntireTbDueToAttributeChange 0x0
NtDebugActiveProcess 0xB
NtRemoveProcessDebug 0xB
PopAllocateHiberContext Ox1F
PsplnitPhase3 0x3
PspUserThreadStartup 0x0
VslAbortLiveDump 0x28
VslCloseSecureHandle 0x1B
VslConfigureDynamicMemory 0x21
VslConnectSwinterrupt 0x22
Vs(CreateSecureAllocation 0x13
VslCreateSecurelmageSection 0x16
VslCreateSecureProcess 0x5
VslCreateSecureThread 0x7
VslEnableOnDemandDebugWithResponse | 0x10
VslEndSecurePagelteration 0x801
VslExchangeEntropy Ox1E
VslFastFlushSecureRangelList OxE1
VslFillSecureAllocation Ox14
VslFinalizeLiveDumplnSk 0x27/0x28
VslFinalizeSecurelmageHash 0x17
VslFinishSecurelmageValidation 0x18
VslFlushSecureAddressSpace OxEO
VslFreeSecureHibernateResources 0x20
VslGetNestedPageProtectionFlags OxE7
VslGetOnDemandDebugChallenge OxF
VslGetSecurePebAddress 0xCO
VslGetSecureTebAddress 0xC
VslGetSetSecureContext OxE
VsllsTrustletRunning 0x12

VsllumEfiRuntimeService

OxE8

VsllumEtwEnableCallback
VslLiveDumpQuerySecondaryDataSize
VsIMakeCodeCatalog
Vs(NotifyShutdown
VslpAddLiveDumpBufferChunk
VslpConnectedStandbyPoCallback
VslpConnectedStandbyWnfCallback
VslplumPhasellnitialize
VslplumPhase4initialize
VslpKsrEnterlumSecureMode
VslPrepareSecurelmageRelocations
VslpSetupLiveDumpBuffer
VslQuerySecureKernelProfileInformation
VslRegisterLogPages
VslRegisterSecureSystemProcess
VslRelocatelmage
VslReportBugCheckProgress
VslRetrieveMailbox
VslRundownSecureProcess
VsiSetupLiveDumpBufferinSk
Vs(SlowFlushSecureRangelList
VslTerminateSecureThread
VslTransferSecurelmageVersionResource
VslValidateDynamicCodePages
VslValidateSecurelmagePages

0xD4
0x23
0x15
OxEE
0x25
0x29
0x29
0xD0
Ox1
OxF1
0x19
0x26
0x2A
OxEA
Ox4
Ox1A
O0xED
0x11
0xA
0x24/0x28
0xE2
0x9
0x1D
0x1C
0xC1
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