
Virtual Secure Mode: Communication Interfaces

Aleksandar Milenkoski
amilenkoski@ernw.de)

This work is part of theWindows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author ()).

The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung,
Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik - BSI).

Required Reading
In addition to referenced work, related work focussing onWindows Architecture and Virtual SecureMode (VSM),
part of the Windows Insight series, are relevant for understanding concepts and terms mentioned in this docu-
ment.

Technology Domain
The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

1 Introduction
A VSM-enabled Windows environment implements multiple communication interfaces:

• Isolated User Mode (IUM) system calls: Interface between IUM applications and the secure kernel, where
the secure kernel provides services to IUM applications (Section 2);

• normal-mode services: Interface between the secure and the normal kernel, where the normal kernel
provides services to the secure kernel (Section 5);

• secure services: Interface between the secure and the normal kernel, where the secure kernel provides
services to the normal kernel (Section 4); and

• hypercalls: Interface between the normal and the secure kernel, and the hypervisor, where the hypervisor
provides services to the normal and the secure kernel (Section 3).

In addition to the interfaces mentioned above, there is the traditional non-VSM-specific system call interface
enabling communication between user applications and the normal kernel. Section 2 focuses on the execution
path of IUM system calls, comparing it with that of traditional system calls.



2 IUM System Calls
IUM system calls implement services that the secure kernel exposes to IUM applications. This includes critical
system services enabling the operation of IUM applications, such as memory management services.

The execution path of IUM system calls is conceptually identical to that of traditional system calls. An IUM
application executes IUM system calls by invoking functions implemented in the IUMDLL.dll library file. These
functions have names starting with Ium and implement execution context switching between IUM applications
and the secure kernel. Figure 1 depicts the implementation of the IumPostMailbox IUM system call in IUMDLL.dll.
For comparison purposes, Figure 2 depicts the implementation of the traditional system call NtCreateUserPro-
cess in the NTDLL.dll library file.

Figure 1: Implementation of IumPostMailbox in IUMDLL.dll

Figure 2: Implementation of NtCreateUserProcess in NTDLL.dll

Same as traditional system calls, each IUM system call can be uniquely identified by a system service index.
Indexes specifying IUM system calls have the highest bit set. An example is 0x800000A, a system service index
specifying the IumPostMailbox IUM system call (see line 3 in Figure 1). Once the system service index is set,
the syscall instruction switches the execution context to the secure kernel (see line 4 in Figure 1 and line 8 in
Figure 2).

Once the execution context is switched to the secure kernel, it invokes the KiSystemCall64 routine. The address
of this function is stored in the model-specific register (MSR) 0xC0000082 when the ShvlpInitProcessor function
is invoked (see Figure 3). This function is invoked during the initialization of the secure kernel. For comparison
purposes, Figure 4 depicts the use of the model-specific register (MSR) 0xC0000082 for the same purpose in
the context of traditional system calls. The KiInitializeBootStructures is invoked during the initialization of the
normal kernel.

Figure 3: MSR 0xC0000082 storing KiSystemCall64 (secure kernel)

KiSystemCall64 routes invocations of a given IUM system call to the corresponding handler function implement-
ing the actual service functionality. Figure 5 depicts the implementation of KiSystemCall64. This function first
evaluates whether the highest bit of the system service index is set (see line 5 in Figure 5). If set, KiSystemCall64
loads the address of the kernel structure SkiSecureServiceTable (see line 13 in Figure 5). This structure is an
array of functions implementing the service functionalities of IUM system calls. Figure 6 depicts the imple-
mentation of SkiSecureServiceTable. After loadingSkiSecureServiceTable, KiSystemCall64 executes the handler



Figure 4: MSR 0xC0000082 storing KiSystemCall64 (normal kernel)

Figure 5: The implementation of KiSystemCall64

function indexed by the system service index identifying the invoked IUM system call (see line 22 and line 33 in
Figure 5).

If the highest bit of the system service index is not set, that is, if the evaluation at line 5 in Figure 5 fails, the
KiSystemCall64 routes an invocation of a normal-mode service. Section 5 discusses normal-mode services.

Since only IUM applications may invoke IUM system calls, the conditions for instantiating IUM applications by
third parties apply also to invoking IUM system calls by these parties.

3 Hypercalls
Hypercalls implement services that the hypervisor exposes to partitions. This involves critical system services
enabling the operation of virtual systems, such asmemorymanagement services. The hypercalls implemented
by the Hyper-V hypervisor are listed in ([Mic17], Appendix A). Each Hyper-V hypercall can be uniquely identified
by an identification number, referred to as a call code.

Partitions can invoke hypercalls only from kernel-mode. In a VSM-enabled Windows environment, this includes
the execution context of the normal and the secure kernel. The winhv and winhvr drivers implement wrapper
functions enabling the straightforward invocation of hypercalls. For example, the functions implement as-
signment of call codes and management of hypercall input and output values. The activities that need to be
performed for a Hyper-V hypercall to be executed are documented in ([Mic17], Section 3).



Figure 6: The implementation of SkiSecureServiceTable

A crucial prerequisite for Hyper-V hypercalls to be invoked is the existence of the hypercall page in the context
of the partition. A hypercall page is a memory page that stores code for invoking hypercalls as per the Hyper-V
specification. This page is exposed by the hypervisor to each partition. During the initialization process, each
partition reserves a memory page and stores its guest physical address (GPA) in the MSR 0x40000001 ([Mic17],
Section 3.13). Hyper-V then populates this page with code. A populated hypercall page cannot be modified in
order to prevent unauthorized modifications of the code stored in it. Figure 7 depicts the contents of a MSR
0x40000001.

Figure 7: The contents of a MSR 0x40000001

When the hypercall page is loaded in the context of a partition, the kernel running in the partition can invoke
hypercalls. This typically involves activities such as loading the hypercall page, allocating memory buffers for
hypercall input and output values, and setting these values. Finally, the code stored in the hypercall page is
executed so that the execution context is switched to the hypervisor. For example, theWinHvpHypercall function
of the winhvr driver results in the execution of code stored in the hypercall page.

Figure 8 depicts the contents of a hypercall page accessed in the WinHvpHypercall function. It contains page-
aligned code for invoking hypercalls, padded with “no operation” (nop) instructions. The page contains several
sets of instructions ending with the instruction sequence “vmcall ret”. The vmcall instruction is implemented
in Intel processors and it switches execution context to the hypervisor.

The sets of instructions stored in the hypercall page can be understood as trampolines for abstracting the
switching of execution context to the hypervisor in different scenarios. These trampolines accommodate the
execution of any hypercall, and of the hypercalls with call codes 0x11 and 0x12, on both 32-bit and 64-bit plat-
forms. The instructions preceding the vmcall instructions (if any) save the contents of the eax, or the rcx, register
and store a hypercall call code in this register. The eax, or the rcx, register stores a hypercall call code on 32-bit
and 64-bit platforms, respectively. The use of specific registers for storing hypercall input and output values,
as well as call codes, is documented in ([Mic17], Section 3.7) and ([Mic17], Section 3.8).

The sets of instructions in the hypercall page where the values 0x11 and 0x12 are stored in the eax, or the



Figure 8: The contents of a hypercall page

rcx, register are used for invoking the hypercalls with call codes 0x11 and 0x12. These hypercalls are used for
invoking normal-mode and secure services. Section 4 and Section 5 discuss these services. The first set of
instructions, containing only the “vmcall ret” instruction sequence, is used for invoking any other hypercall.

When the vmcall instruction is executed, the execution context is switched to Hyper-V. The hypervisor then
performs access control checks. If a given hypercall is protected by access control, the partition invoking it has
to possess the required privilege ([Mic17], Section 3.11). If the hypercall is to be executed, Hyper-V loads an
array that contains entries of a fixed size. Each entry is indexed by a hypercall call code and contains a pointer to
a function implementing the functionality of the hypercall identified by the call code. Hyper-V then executes the
function indexed by the call code of the invoked hypercall. After this, the execution context is switched back to the
kernel that has invoked the hypercall. Figure 9 depicts a portion of the array containing functions implementing
hypercall functionalities indexed by call codes (see, for example, sub_FFFFF800002129D8 [function] and 5Dh
[call code] in Figure 9). This array is implemented as part of hvix64.exe.

Figure 9: Functions implementing hypercall functionalities



4 Secure Services
The secure kernel exposes services to the normal kernel, referred to as secure services in this work. They
implement security-critical kernel operations that are executed in the secure, isolated environment. For a
secure service to be invoked by the normal kernel, the kernel has to switch from Virtual Trust Level (VTL) 0 to
VTL 1. This process is known as VTL call. In its essence, a VTL call is an execution context switch from a lower
to a higher VTL. ([Mic17], Section 15.6.1) provides details on the VTL call process.

VTL calls are performed by the normal kernel issuing a hypercall with call code 0x11 – the HvCallVtlCall hy-
percall ([Mic17], Section 17). The normal kernel issues HvCallVtlCall by invoking the function chain VslpEnterI-
umSecureMode → HvlSwitchToVsmVtl1 → HvlpVsmVtlCallVa. The VslpEnterIumSecureMode function is invoked in
the functions implemented as part of the normal kernel that require a secure service. HvlpVsmVtlCallVa is a
variable storing a function referencing the trampoline of the hypercall page for invoking the hypercall with call
code 0x11. Figure 10 depicts this trampoline executed in the HvlSwitchToVsmVtl1 function.

Figure 10: Issuing a VTL call

Each secure service can be uniquely identified by an identification number, referred to as secure service call
number (SSCN). In the context of the normal kernel, a SSCN is specified as the second parameter of VslpEn-
terIumSecureMode. The SSCN is then passed to the secure kernel as part of a data structure stored in the rdx
register when a VTL call is issued. This structure is referred to as the VTL call data structure in this work. The
table presented in the section ‘Secure Services’ of the Appendix lists the functions implemented as part of the
normal kernel (column ‘Function’) that invoke secure services identified by SSCNs (column ‘ SSCN’).

In addition to secure services, a VTL call supports the specification of other operations that can be executed by
the secure kernel. Each operation is uniquely identified by an operation code, which is stored in the VTL call
data structure. The operations are:

• managing the execution of a thread relevant to the secure kernel (operation code – 0x0): Section 5 dis-
cusses more on this topic;

• invocation of a secure service (operation code – 0x01);

• flushing the transaction lookaside buffer (TLB) (operation code – 0x02): With respect to the design of VSM,
the flushing of the TLB is considered a security-critical activity and is therefore executed in the secure
environment. The TLB is involved in translations between virtual and physical addresses.

Figure 11 depicts the contents of the VTL call data structure when a VTL call is issued. In Figure 11, 0x01 is an
operation code, indicating invocation of a secure service, and 0xD1 is a SSCN.

In the context of the secure kernel, a VTL call is processed in the function IumInvokeSecureService, invoked by
the SkCallNormalMode function. IumInvokeSecureService extracts the SSCN from the VTL call data structure
and invokes the function(s) implementing the actual secure service identified by the SSCN. The secure kernel
then continues the execution of SkCallNormalMode. This function invokes the trampoline of the hypercall page
for invoking the hypercall with call code 0x12. This is done for returning relevant data to the normal kernel and
switching the execution context back to VTL 0. The hypercall with call code 0x12 is the HvCallVtlReturn hypercall
([Mic17], Section 17). It is used for switching from a higher to a lower VTL. This process is opposite to a VTL



Figure 11: Contents of the VTL call data structure

call and is referred to as VTL return. ([Mic17], Section 15.7.1) provides details on the VTL return process. In
SkCallNormalMode, the trampoline for invoking HvCallVtlReturn is stored in the ShvlpVtlReturn variable (see Fig-
ure 12). This variable is populated during the initialization of the secure kernel, in the ShvlpInitializeVsmCodeArea
function.

Figure 12: Execution of the HvCallVtlReturn hypercall in SkCallNormalMode

5 Normal-mode Services
The normal kernel exposes services to the secure kernel, referred to as normal-mode services in this work.
These services implement kernel operations that are not implemented by the secure kernel, however, are nec-
essary for this kernel or the IUM applications that it hosts to function. The secure kernel implements only a
limited set of security-critical functionalities. This is because this kernel is designed to expose a minimal in-
terface. It has a significantly smaller codebase than the one of the normal kernel. This reduces the risk of
breaches due to design or implementation errors.

Example normal-mode services include semaphore and process management, and registry and filesystem in-
put/output. The traditional system calls implemented as part of the normal kernel are invoked as normal-mode
services by the secure kernel.

In the context of the secure kernel, normal-mode services that are implemented as system calls in the normal
kernel, are invoked by executing functions with names starting with Nt or Zw. These functions may be invoked
by IUM applications requesting kernel functionalities or the secure kernel itself. The functions with names
starting with Zw invoke the KiServiceInternal function. The system service index is stored in the eax register.
Figure 13 depicts the invocation of KiServiceInternal by the function ZwTerminateProcess such that the system
service index is 0x2C. This is the index of theNtTerminateProcess system call implemented in the normal kernel.

KiServiceInternal invokes KiSystemServiceStart, a code segment of the KiSystemCall64 function (see Figure 5,
Section 2). In KiSystemServiceStart, the secure kernel loads the variable IumSyscallDispatchTable (which is dif-
ferent than the one in the normal kernel). This is because the highest bit of the system service index is set (see
line 17 in Figure 5). IumSyscallDispatchTable potentially contains pointers to functions implemented as part of
the IumSyscallDispEntries array. IumSyscallDispEntries stores pointers to functions with prefix Nt, indexed by a
system service index. Figure 14 depicts a portion of the contents of IumSyscallDispEntries.



Figure 13: ZwTerminateProcess invoking KiServiceInternal

Figure 14: Contents of IumSyscallDispEntries

After loading IumSyscallDispatchTable, KiSystemServiceStart invokes the function with prefix Nt indexed by the
system service index stored in the eax register. The functions with prefix Nt invoke stubs for executing normal-
mode services. These stubs are implemented in functionswith names startingwithNk. For example,NtSetEvent
invokes NkSetEvent.

Figure 15 depicts the process of executing normal-mode services by functions with prefix Nk. Figure 15 depicts
the concrete example of NkTerminateProcess executing the system call NtTerminateProcess as a normal-mode
service. NkTerminateProcess invokes IumGenericSyscall such that the first parameter is a system service in-
dex with the highest bit set. NkTerminateProcess sets the first parameter of IumGenericSyscall to 0x8000002C.
0X2C is the system service index of theNtTerminateProcess system call implemented in the normal kernel. Ium-
GenericSyscall invokes SkSyscall such that its first parameter is the system service index (SysCallID in Figure 15).
SkSyscall sets the highest bit of the system service index to 0 (SysCallID&0x7FFFFFFF in Figure 15). The system
service index is then passed to the SkCallNormalMode function as part of a data structure (param in Figure 15).

SkCallNormalMode executes a VTL return; that is, it switches from VTL 1 to VTL 0 (see Section 4). SkCallNor-
malMode passes the data structure provided by SkSyscall to VTL 0 (param in Figure 15). This structure is referred
to as the VTL return data structure in this work. SkCallNormalMode executes a VTL return by invoking the hy-
percall with call code 0x12 (see Section 4).

In the context of the normal kernel, normal-mode services requested by IUM applications or by the secure
kernel are handled in the VslpEnterIumSecureMode function. The VslpDispatchIumSyscall function, invoked by
VslpEnterIumSecureMode, executes normal-mode services implemented as system calls in the normal kernel.
ThePsDispatchIumService function, invoked by VslpEnterIumSecureMode, executes other normal-mode services.

VslpDispatchIumSyscall and PsDispatchIumService are executed in the context of worker threads. These threads
act as agents of entities running in the secure environment for executing normal-mode services. Normal-mode
services requested by the secure kernel are executed in the context of a thread owned by the Secure System
process. Normal-mode services requested by IUM applications are executed in the context of threads owned by
these applications. Figure 16 depicts the invocation of VslpDispatchIumSyscall in the context of threads owned



Figure 15: Executing normal-mode services by functions with prefix Nk (NkTerminateProcess)

by the Secure System process ([1] in Figure 16) and the BioIso.exe IUM application ([2] in Figure 16). Next, the
operation of the worker thread owned by BioIso.exe is discussed.

Figure 16: Invocation of VslpDispatchIumSyscall

The thread enters the VslpEnterIumSecureMode function. This function issues VTL calls in a loop, by executing
the hypercall with call code 0x11. These VTL calls are issued by invoking HvlSwitchToVsmVtl1, such that the
SSCN is set to 0 and the operation code is set to 0x0 (see Section 4). At a given point in time, the data returned
from the VTL call contains either a system service index or a normal-mode service code. Normal-mode service
codes are used for uniquely identifying normal-mode services that are not implemented as system calls in the
normal kernel.

If the returned data contains a system service index, the VslpDispatchIumSyscall function invokes the corre-
sponding system service routine. If the returned data contains a normal-mode service code, the PsDispatchI-



umService function invokes the corresponding normal service. PsDispatchIumService implementsmultiple con-
dition blocks for invoking specific functions for a given normal service code.

Figure 17 depicts the presence of a system service index in the data returned from a VTL call issued in VslpEn-
terIumSecureMode. The system service index 0x48, which specifies the NtCreateEvent system call, results in
VslpDispatchIumSyscall invoking the NtCreateEvent system service routine. This routine is implemented in the
normal kernel.

Figure 17: VslpDispatchIumSyscall invoking the NtCreateEvent system call

Once a normal-mode service is handled in VslpDispatchIumSyscall or PsDispatchIumService, the loop issuing VTL
calls with operation code 0x0 is continued. At some point, the worker threads owned by BioIso.exe is put to sleep
and terminated.



Appendix
Secure Services

Function SSCN
DbgkCopyProcessDebugPort 0xB
HvlCollectLivedump 0xE9
HvlInitializeProcessor 0x2
HvlNotifyDebugDeviceAvailable 0xF0
HvlpGetSecurePageList 0x802
HvlPrepareForRootCrashdump 0xEC
HvlPrepareForSecureHibernate 0xEB
HvlpStartSecurePageListIteration 0x800
KeBalanceSetManager 0xD1
KeCopyPrivilegedPage 0xE4
KeRequestTerminationThread 0x8
KeReservePrivilegedPages 0xD2
KeSecureProcess 0x6
KeSetPagePrivilege 0xE6/0xE3/0xE5
KeUnsecureProcess 0x1B
MiApplyDynamicRelocations 0xD3
MiFlushEntireTbDueToAttributeChange 0x0
NtDebugActiveProcess 0xB
NtRemoveProcessDebug 0xB
PopAllocateHiberContext 0x1F
PspInitPhase3 0x3
PspUserThreadStartup 0x0
VslAbortLiveDump 0x28
VslCloseSecureHandle 0x1B
VslConfigureDynamicMemory 0x21
VslConnectSwInterrupt 0x22
VslCreateSecureAllocation 0x13
VslCreateSecureImageSection 0x16
VslCreateSecureProcess 0x5
VslCreateSecureThread 0x7
VslEnableOnDemandDebugWithResponse 0x10
VslEndSecurePageIteration 0x801
VslExchangeEntropy 0x1E
VslFastFlushSecureRangeList 0xE1
VslFillSecureAllocation 0x14
VslFinalizeLiveDumpInSk 0x27/0x28
VslFinalizeSecureImageHash 0x17
VslFinishSecureImageValidation 0x18
VslFlushSecureAddressSpace 0xE0
VslFreeSecureHibernateResources 0x20
VslGetNestedPageProtectionFlags 0xE7
VslGetOnDemandDebugChallenge 0xF
VslGetSecurePebAddress 0xC0
VslGetSecureTebAddress 0xC
VslGetSetSecureContext 0xE
VslIsTrustletRunning 0x12
VslIumEfiRuntimeService 0xE8

VslIumEtwEnableCallback 0xD4
VslLiveDumpQuerySecondaryDataSize 0x23
VslMakeCodeCatalog 0x15
VslNotifyShutdown 0xEE
VslpAddLiveDumpBufferChunk 0x25
VslpConnectedStandbyPoCallback 0x29
VslpConnectedStandbyWnfCallback 0x29
VslpIumPhase0Initialize 0xD0
VslpIumPhase4Initialize 0x1
VslpKsrEnterIumSecureMode 0xF1
VslPrepareSecureImageRelocations 0x19
VslpSetupLiveDumpBuffer 0x26
VslQuerySecureKernelProfileInformation 0x2A
VslRegisterLogPages 0xEA
VslRegisterSecureSystemProcess 0x4
VslRelocateImage 0x1A
VslReportBugCheckProgress 0xED
VslRetrieveMailbox 0x11
VslRundownSecureProcess 0xA
VslSetupLiveDumpBufferInSk 0x24/0x28
VslSlowFlushSecureRangeList 0xE2
VslTerminateSecureThread 0x9
VslTransferSecureImageVersionResource 0x1D
VslValidateDynamicCodePages 0x1C
VslValidateSecureImagePages 0xC1



References
[Mic17] Microsoft. Hypervisor Top Level Functional Specification. 2017. Version 5.0b; https://docs.microsoft.

com/en-us/virtualization/hyper-v-on-windows/reference/tlfs.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs

	Introduction
	IUM System Calls
	Hypercalls
	Secure Services
	Normal-mode Services

		2019-05-22T13:24:46+0100
	amilenkoski.client.ernw.net




