
Virtual Secure Mode: Architecture Overview

Aleksandar Milenkoski)

amilenkoski@ernw.de
Dominik Phillips
dphillips@ernw.de

This work is part of theWindows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author ()).

The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung,
Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik - BSI).

Required Reading
In addition to referenced work, related work focussing onWindows Architecture and Virtual SecureMode (VSM),
part of the Windows Insight series, are relevant for understanding concepts and terms mentioned in this docu-
ment.

Technology Domain
The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

1 Introduction
VSM is a Windows 10 technology for creating and managing a secure operating system environment, isolated
from the traditional Windows environment. The secure isolated environment is designed to host security-
critical functionalities, protecting them from attacks targeting the operating system.1 VSM uses virtualization
as a basis.

2 Virtualization
Figure 1 depicts the architecture of a virtualized Windows environment. The Hyper-V hypervisor virtualizes
hardware and hosts one or multiple virtual machines, also known as partitions (Partition A and Partition B
in Figure 1). The hypervisor provides virtualized hardware resources to each partition and manages these
resources. This includes memory resources and virtual CPUs. The hypervisor is implemented in the %Sys-
temRoot%\System32\hvix64.exe (for Intel-based platforms) and %SystemRoot%\System32\hvax64.exe (for AMD-
based platforms) executables.

1https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs [Retrieved: 2/5/2018]

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs


Virtual memory

Hypervisor (Hyper-V)
hvix64.exe/hvax64.exe

Legend:

cached into

Virtual CPUs

Partition A

GVA GPAGVA GPA

Virtual memory

Virtual CPUs

Partition B

GVA GPAGVA GPA

GVA GPAGPA SPA GVA GPAGPA SPA

TLB
GVA GPAGVA SPA

page table

Figure 1: Architecture of a virtualized Windows environment

Each partition hosts an operating system environment. If Windows-based, this environment has an architecture
consisting of the Windows parts: system support processes, services, applications, the Windows subsystem,
ntdll.dll, drivers, kernel, and the hardware abstraction layer. Each partition operates within its own isolation
boundary. Isolation boundaries between partitions are created and maintained by the hypervisor. Partition
isolation boundaries are realized such that the hypervisor allocates separate memory spaces and virtualized
hardware resources to each partition. This implies that a partition cannot access the memory allocated to
another partition.

In a virtualized environment, based on Hyper-V, a partition known as the root partition is used for managing and
providing services to other co-located partitions. For example, the root partition hosts virtualization services
provided by the hypervisor and it provides these services to other co-located partitions. The root partition also
hosts device drivers since it is the only partition that has direct access to hardware resources. There are three
independent memory address spaces ([Mic17], Section 1.8):

• System physical address space: System physical addresses (SPAs, SPA in Figure 1) define the physical
address space of the hardware memory resources as seen by the CPUs and the hypervisor. This space is
known as the system physical space. There is only one system physical address space for the platform on
which the virtualized Windows environment operates;

• Guest physical address space: Guest physical addresses (GPAs, GPA in Figure 1) define the physical ad-
dress space as seen by a partition. This space is known as the guest physical space. The guest physical
space is a virtualized abstraction of the system physical address space. This space is virtualized by the
hypervisor, which can map GPAs to SPAs. There is one guest physical address space per partition;

• Guest virtual address space: Guest virtual addresses (GVAs, GVA in Figure 1) define the virtual address
space as seen by a partition. This space is known as the guest virtual space. The guest virtual space is a
virtualized abstraction of the guest physical space. There is one guest virtual address space per partition.

Translations between addresses that define different address spaces are performed using page tables (see Fig-
ure 1 and Figure 2). Page tables are constructs mapping addresses between different address spaces. They are
used by the memory management units (MMUs) of CPUs and kernel routines performing memory operations.

Traditionally, each partition leverages software-implemented page tables for mapping GVAs to GPAs when ref-
erencing memory locations. These page tables are used by software-implemented MMUs of virtual CPUs and



Legend:

address translation

GVA GPA SPA

Guest virtual 
address space

Guest physical 
address space

System physical 
address space

page table page table

TLB cache

Figure 2: Address translation

routines of the partitions’ kernel performing memory operations. The GPAs are subsequently translated to
SPAs by the hypervisor. This is done by using page tables leveraged by the MMUs of hardware CPUs and rou-
tines of the hypervisor performingmemory operations. The hypervisormaintains a copy of the page tables used
by the partitions. This is because the hypervisor has to keep track of changes of these page tables made by the
partitions so that it updates its page table accordingly. The copies of the partitions’ page tables are software
constructs.

The use and maintenance of software-implemented page tables is performance-expensive. This is because
when a memory location is referenced, its address has to be translated twice – once using the software-
implemented page tables and once using the page tables implemented in hardware. Page table updates are
also expensive operations in terms of performance. Therefore, Hyper-V uses the second-level address trans-
lation (SLAT) CPU features. SLAT maps GVAs to SPAs and caches such mappings in the translation lookaside
buffer (TLB in Figure 1, TLB cache in Figure 2). This is done by caching both GVA to GPA, and GPA to SPA map-
pings in the TLB. The use of the SLAT technology significantly speeds-up the use and management of page
tables.

3 Virtual Secure Mode
Figure 3 depicts the architecture of a VSM-enabledWindows environment. Hyper-V hosts the root partition. This
partition hosts two kernel- and user-mode environments. Each kernel- and user-mode environment operates
within an isolation domain, referred to as Virtual Trust Level (VTL). The concept of VTLs enforces isolation at
multiple aspects ([Mic17], Chapter 15):

• memory access: each VTL has a set of memory access protections associated with it. This prevents
memory associated with a given VTL from being accessed by an entity operating in another VTL;

• virtual processor states: each virtual processor maintains a per-VTL state, where each VTL has a set of
private virtual processor registers associated with it;

• interrupts: each VTL has a separate interrupt system for preventing interference in interrupt delivery and
procession from entities operating in other VTLs.

The isolation described above is implemented and enforced by Hyper-V as the underlying entity managing the
execution of the VSM-enabledWindows environment. At the time of the analysis, Hyper-V implements two VTLs:
VTL 0 and VTL 1. VTL 0 hosts the traditional Windows environment consisting of the operating system parts:
system support processes, services, applications, the Windows subsystem, ntdll.dll, drivers, and the kernel.



Hypervisor (Hyper-V)

hvix64.exe/hvia64.exe

Secure kernel

securekernel.exe

skci.dll

ntdll.dllntdll.dll

Windows subsystem

System support processes, services, application

iumdll.dll

Windows subsystem
IUM library
iumbase.dll
iumcrypt.dll

IUM Application 

cng.sys

Normal kernel

ntoskrnl.exe

VTL 0: Normal environment VTL 1: Secure environment

User-land

Kernel-land

User-land

Kernel-land

Root partition

Figure 3: Architecture of a VSM-enabled Windows environment

This work refers to this environment as the normal environment and to the kernel running in it as the normal
kernel.

VTL 1 hosts a Windows environment for performing security-critical functionalities. We refer to this environ-
ment as the secure environment. The secure environment consists of:

• a kernel and its required modules: The kernel running in the secure environment is referred to as the se-
cure kernel in this work. It is implemented in the %SystemRoot%\System32\securekernel.exe executable.
The kernel’s required modules are implemented in the %SystemRoot%\System32\skci.dll and %System-
Root%\System32\cng.sys executables. This kernel performs a limited set of security-critical functionali-
ties, such as cryptographic operations.

• a user-mode environment: There are strict security requirements for the processes running in this en-
vironment. This includes encrypted interprocess communication (IPC) and verifiable code integrity. This
environment is known as the isolated user mode (IUM) and the processes running in it as IUM applica-
tions, or trustlets. Trustlets perform security-critical functionalities, such as credential storage. Some
trustlets are:

– lsaIso.exe: This trustlet implements functionalities of the Local Security Authority (LSA) support pro-
cess (lsass.exe). This process manages user authentication. When VSM is enabled, the local security
authority process running in the normal environment does not perform the actual credential verifica-
tion. This task is delegated to the secure, isolated counterpart of this process running in the secure
environment – the IUM application lsaIso.exe. lsass.exe and lsaIso.exe communicate over encrypted
IPC channels.2 The isolation of the security-critical functionalities of the LSA prevents abuses of the
local security authority for the purpose of accessing user credentials in an unauthorized manner.
This includes abuses from a user with administrator privileges.

– BioIso.exe: This trustlets implements security-critical functionalities of the Windows Hello biomet-

2https://msdn.microsoft.com/en-us/library/windows/desktop/mtC(v=vs.85).aspx [Retrieved: 3/5/2018]

https://msdn.microsoft.com/en-us/library/windows/desktop/mtC(v=vs.85).aspx


rics service.3 This service manages user authentication via biometric features. Similar to lsass.exe,
theWindowsHello biometrics service delegates security-critical tasks to the IUMapplicationBioIso.exe.

The trustlets above are provided by Microsoft and are distributed with Windows 10.

A typical IUM application loads the core IUM library implemented in the iumbase.dll and iumcrypt.dll library
files. These, in turn, load the iumdll.dll file. The latter implements the native IUM system call application
programming interface (API) interacting directly with the secure kernel.

An IUM application may load standard, traditional Windows libraries to use functionalities of the Windows
system by invoking functions implemented in these libraries. For example, lsaIso.exe loads the Windows
cryptography libraries implemented in the library files bcrypt.dll, cryptsp.dll, and cryptdll.dll. These load
the native system service API implemented in the kernelbase.dll and ntdll.dll library files. Standard Win-
dows functionalities are performed by the normal kernel. The secure kernel does not perform these
functionalities itself, but relays the trustlets’ invocations of the library functions implementing them to
the normal kernel.

Figure 4 depicts the contents of a memory region beginning at the address 0x2779cbb0000. This region is part of
a memory dump of a VSM-enabled Windows environment and is mapped to the lsaIso.exe trustlet. The memory
dump is a snapshot of the memory allocated to the root partition hosting the normal and the secure environ-
ment, generated after a controlled system crash was triggered. The question mark characters (‘?’) denote
unreadable memory. The memory is unreadable since it cannot be accessed outside of the isolation bound-
aries implemented by VTL 1, in which lsaIso.exe operates. This demonstrates the VTL-based memory access
protections enforced by Hyper-V.

Figure 4: Memory region mapped to lsaIso.exe

The architecture of a VSM-enabled Windows environment consists of core VSM entities and VSM features. The
core VSM entities are initialized and executed once Hyper-V is enabled. The core VSM entities are: the normal
environment, the secure kernel and its required modules (skci.dll and cng.sys), and the core IUM library. As
mentioned earlier, Hyper-V implements VTL-based isolation between the normal environment and the other
core VSM entities.

VSM features are VSM entities that need to be explicitly configured to operate. VSM features are implemented
as IUM applications or as part of modules of the secure kernel. Sample VSM features are HVCI and Credential
Guard. HVCI provides code integrity verification functionalities and is implemented as part of the skci.dllmodule
of the secure kernel. Credential Guard manages user credentials and is implemented in the lsaIso.exe trustlet.

3https://docs.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-biometrics-in-enterprise [Retrieved:
3/5/2018]

https://docs.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/hello-biometrics-in-enterprise


References
[Mic17] Microsoft. Hypervisor Top Level Functional Specification. 2017. Version 5.0b; https://docs.microsoft.

com/en-us/virtualization/hyper-v-on-windows/reference/tlfs.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs

	Introduction
	Virtualization
	Virtual Secure Mode

		2019-05-22T13:24:06+0100
	amilenkoski.client.ernw.net




