—(®) ERNW
d providing security.

The TPM: Integrity Measurement

Aleksandar Milenkoski™
amilenkoskildernw.de

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author (=),

The content of this work has been created in the course of the project named "Studie zu Systemaufbau, Protokollierung,
Hartung und Sicherheitsfunktionen in Windows 10 (SiSyPHuUS Win10)’ (ger.) - 'Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security [ger., Bundesamt fiir Sicherheit in der Informationstechnik - BSI).

Required Reading

In addition to referenced work, related work focussing on the Trusted Platform Module (TPM] and early launch
anti-malware (ELAM], part of the Windows Insight series, are relevant for understanding concepts and terms
mentioned in this document.

Technology Domain

The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB].

The TPM standard in focus is version 2.0.

1 Introduction

In this work, we discuss the integrity measurement mechanism of Windows 10 and the role that the TPM plays
as part of it. This mechanism, among other things, implements the production of measurement data. This
involves calculation of hashes of relevant executable files or of code sequences at every system startup. It
also involves the storage of these hashes and relevant related data in the TPM device and in log files for later
analysis.

The analysis of measurement data is normally performed by a trusted remote platform, a platform different
than the one where hashes have been calculated. The remote platform can be reached over a secure network
connection. A typical analysis of measurement data consists of, for example, comparing the most recently
calculated hashes with hashes calculated at a previous time, or with hashes known as good hashes. A mismatch
in the hash values indicates platform corruption. The verification of platform integrity by a remote platform is
known as remote attestation.

amilenkoski.client.ernw.net
2019-05-21 11:52:18

2 The Integrity Measurement Mechanism of Windows 10

Figure[l|depicts the architecture of the integrity measurement mechanism implemented in Windows 10. During
the booting process of a given platform (Platform in Figure]. the Unified Extensible Firmware Interface (UEFI)
firmware, the boot manager, and the Windows loader measure relevant entities. They then store a processed
form of the produced measurement data in the platform configuration registers (PCRs) of the TPM installed
on the platform [measured into in Figure]. In Figure , we refer to the UEFI firmware, the boot manager, and
the Windows loader as the pre-operating system (0S) environment (Pre-0S in Figure]. We discuss in greater
detail the measurement performed in the pre-0S environment in Section @

Legend:
SRTM e file /O .57 _ e TPMcommand

—_— loads - » nework data ransfer e———» measured inw

driver

Attestation server

Services and applications

- Windows Boaot Configuration Log ------------------------ = Attestation client
TPM PCRs
00 ! AM and kernel
-------------------------- i ELAM driver ~
: il =Thsi_Revoke_Atestation>
ilsiq.._._._._.._._.. J —- —b[]
* 9 Pre-0OS —

Figure 1: The architecture of the integrity measurement mechanism of Windows 10

The platform stores the hashes calculated in the pre-0S environment and relevant related data into a context
known as the Windows Boot Configuration Log (WBCL) ([Ste16], Section "Windows Boot Configuration Log’).
A new WBCL is generated at every system startup since this is when new integrity measurements are made.
Each WBCL is archived into a log file, referred to as the WBCL file. WBCL files are stored in the %System-
Root%\Logs\MeasuredBoot directory. We discuss the content and format of WBCL files in Section E

The Windows loader loads the kernel, which may implement ELAM technology in the form of an ELAM driver
(ELAM and kernelin Figure . In case it detects the loading of a malicious driver, the ELAM driver may revoke the
current WBCL using the Tbsi_Revoke_Attestation function of the TBS library ([Ste16], Section ‘Invalidating the
System Trust State').1.8 Among other things, a revocation of a WBCL consists of storing an unspecified value in
the PCR with index 12. This indicates system corruption to the remote entity verifying platform integrity.

We analyzed the Windows Defender ELAM driver revoking the WBCL in a scenario where a given boot driver
is considered malicious. We first configured the policy at Computer Configuration -> Administrative Templates
-> System -> Early Launch Antimalware such that the kernel initializes only known good images. We then set

Thttps://msdn.microsoft.com/en-us/library/windows/desktop/ij553829 (v=vs.85).aspx [Retrieved: 22/9/2017]

Zhttps://docs.microsoft.com/en-us/windows- hardware/drivers/install/elam-driver-requirements [Retrieved: 22/9/2017]

https://msdn.microsoft.com/en-us/library/windows/desktop/jj553829(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements

breakpoints at the functions for submitting and processing TPM commands implemented as part of the export
TPM driver ths.sys and the TPM driver tpm.sys. Finally, we modified the return value of the EbLookupProperty
function to 7 when the Windows Defender ELAM driver was checking a boot driver for malware. This return
value indicates a known bad image. To remind, the return value of EbLookupProperty represents the decision
of the ELAM driver on the maliciousness of a given boot driver.

We did not observe the Windows Defender ELAM driver or the kernel invoking Thsi_Revoke_Attestation in order
to revoke the current WBCL. They also did not invoke any other function of the TBS library or sent any TPM
command to the TPM device after a decision on the maliciousness of the driver was made. It remains to be
investigated whether the WBCL is revoked using means other than the ones we were focusing on, those specified
in the Microsoft's development guidelines for ELAM drivers.E Although we did not observe the revocation of the
WBCL, we observed that the kernel did not load the boot driver designated as a known bad image; that is, we
observed that the Windows Defender ELAM driver effectively blocks the loading of malicious drivers.

The Windows kernel loads drivers and eventually the Windows subsystem, enabling the execution of system
services and user applications (Services and applications in Figure]. At this point, the content of WBCL files
may be read by an application that transfers relevant content of these files to a remote entity verifying platform
integrity (Remote location in Figure].@ In Figure , we refer to the former as attestation client and to the latter
as attestation server. The attestation client may obtain the most recent WBCL by invoking the Thsi_Get_TCG_Log
function of the TBS library.H

3 Windows Boot Configuration Log

WBCL files contain data in binary form. This data can be translated into Extensible Markup Language (XML])
format using the PCPTool utility. Figure E depicts an excerpt of a WBCL file in XML format. This WBCL file was
generated after a regular system reboot.

A WBCL file consists of multiple entries, where each entry contains relevant information on a given measured
entity in the form of a TCG_PCR_EVENT structure. This structure is defined in the TCG (Extensible Firmware
Interface) EFI Protocol Specification, family 2.0, level 00, revision 00.13 ([Tru1éal, Section 5), which is the latest
TCG EFI specification at the time of writing. It represents each measurement of an entity as a single 'mea-
surement event’ in TCG terminology (see the XML tags starting with EV_ in Figure E]. Some relevant fields of
TCG_PCR_EVENT are PCRIndex and Digest. PCRIndex is the number of the PCR into which the entity has been
measured (PCR Index in Figure B). Digest is the calculated hash of the measured entity (Digest in Figure [).

Hashes of measured entities may be Secure Hash Algorithm (SHAJ-1 hashes or hashes of other types, referred
to as crypto agile hashes in the TCG EFI Protocol Specification ([Truléal, Section 5.2). They are extended into
specific PCRs of the TPM (see the values of the PCR XML tags in Figure E]. Extension of a hash into a given PCR
is done by updating the value already stored in the PCR as follows: PCRnew = H [PCRold || Digest], where PCRold
is the old value stored in the PCR, PCRnew is the new value to be stored in the PCR, and H is a hash algorithm.
In summary, the extension of a hash of a measured entity into a PCR consists of:

¢ oncatenating the old value stored in the PCR with the hash of the entity;
¢ hashing the resulting value of the above operation; and
e storing the resulting hash into the PCR.

The extension of hashes into PCRs is described in detail in the Trusted Platform Module Library Part 3: Com-
mands, family 2.0, level 00, revision 01.16 ([Tru1éb], Section 22.2.1). Given that the values stored in the TPM’s
PCRs are hashes of measurement data, they serve primarily for verification of the integrity of WBCLs.

3https://docs.microsoft.com/en-us/windows- hardware/drivers/install/elam-driver-requirements [Retrieved: 22/9/2017]

4https://docs.microsoft.com/en-us/windows/device-security/protect- high-value-assets- by-controlling-the- health- of-windows- 10-
based-devices [Retrieved: 22/9/2017]

Shttps://msdn.microsoft.com/de-de/library/windows/desktop/bb530712(v=vs.85).aspx [Retrieved: 22/9/2017]

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements
https://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-health-of-windows-10-based-devices
https://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-health-of-windows-10-based-devices
https://msdn.microsoft.com/de-de/library/windows/desktop/bb530712(v=vs.85).aspx

<TCGLog>

[---1

<EV_Separator |PCR="84" EventDigest="9869ca78e74508a285173431b3e52c5c25299e473" Size="4">
ogeoeges

olzmaain w=ep

</EV_Separator>

[---1]

<EV_EFI_Boot_Services_Application |[PCR="84" Digest="ccldlcle3eel8f559666b941bd18558863cb779d" Size="176">
18ce2@89 f12 il 2810ceede41030a00000000081010688021F
83128a 191220002 13 288, 83625c6adcf24a95d1d7fbcl364ade
02020404465095C004508460849605C004d00690062007 2006708730067 00660074005c00420060060874085C0062006F00
6f8074006d08670866087788228865806680690008007 8408
B T R R B R B e R A S T A R R R Vb gl Jaus
SBING P sErF Rl seirioisios Lt iBlos ot chuotoctimogs Fows sl s oo =

</EV_EFI_Boot_Services_Application»

[---1

<PCRs>»
<PCR Index="88">4559d@32d1de3e7c82554a734901d46215846dfd</PCR>
<PCR Index="081">3917e16e21826261c8e9bfa5boeedled354f5F11</PCR>
<PCR "»b2a83b0ebf2f8274209a5b2bdfc31ead55ad7236</PCR>
<PCR "»b2ag83bBehf2f8374299a5b2bdfc31ea955ad7236</PCRY

%PCR "»435ead75281c162049226d5685b508Feebb57d23</PCR>
<PCR 45a3323382bd933f08e7f0e256bcB249e4095b1ec< /PCR>
<PCR a%cdbed7@aatddaaaBc20728a0ebl644dc4d50Tad /PCRY
<PCR >2688f8eleode28e13d81d37982082bda@4a5db2c< /PCR
<PCR Index="11">ebboBdf76613280F206dc38221143a9727399486¢/PCR>

<PCR Index="12">@6982aa5f773bd8c7d67499867fedfcB5a0c5ef@</PCR>
<PCR Index="13">4f451838ea216fd4b908616d3ccec975bBbd153c7</PCR>
<PCR Index="14">»>62aabb45314db6ag01d1695264bod604d20889F8</PCR>
</PCRs>
</TCGLog>

Figure 2: An excerpt of a WBCL file

Into what PCRs hashes are extended depends on what is measured. Table 1 of the TCG PC Client Platform
Firmware Profile Specification, family 2.0, level 00, revision 00.21 [[Tru17] presents a mapping between mea-
sured entities and PCR indexes. In summary, the PCRs with indexes between 0 and 7 are used when extending
hashes of firmware-related entities. Example such entities are UEFI variables. PCRs with indexes between
8 and 15 are used for measuring entities related to the installed operating system. What is stored in these
PCRs is left to the discretion of the operating system’s vendor. The PCRs with indexes between 0 and 15 are
non-resettable PCRs, that is, the values stored in them cannot be cleared by the operating system, but only by
hardware at each system reboot (non-resettable PCRs in Figure , [Tru13], Section 5.3).

Each measurement event is of a specific type, which indicates what has been measured. For example, the
measurement event of type EV_EFI_VARIABLE BOOT contains measurement of a UEFI variable ([Tru17], Table
5). Table E presents a mapping between PCR indexes and types of measurement events. The events were
extended into the PCRs on the Windows 10 system after a regular system reboot. Table B lists only events
specified in the TCG PC Client Platform Firmware Profile Specification. We obtained the results presented in
Table E using a parser of WBCL files translated into XML format, which we developed. Some event types listed in
Table @ have multiple sub-types storing comprehensive information on measured entities. We refer to ([Tru17],
Section 9.3.1) for detailed descriptions of event types.

In addition to the data presented in Table B we extracted from the WBCL file a list of measured executables.
This includes system drivers, system services, and driver executables. Measurements of executables are stored
in WBCL files as events of type EV_Event_Tag. This event type contains information on the hashes of the exe-
cutables. Measurements of executables are extended into the PCRs with indexes 12 and 13 ([Ste16], Section
'Windows Integrity Measurements’). The list of executables we extracted is placed in the Appendix, section
‘Measured Executables’. It contains the filenames of the measured executables.

é([Ste14], Section 'Root of Trust Overview’) presents a mapping between measured Windows 8 entities and PCR indexes. To the best of our
knowledge, such a mapping for Windows 10 entities is not available at the time of writing. Based on our analysis of the content of WBCL
files, we assume that the mapping between Windows 10 entities and PCR indexes is to a great extent the same as that specified in [Ste14].

o
)

Event Type

EV_CRTM_Contents; EV_CRTM_Version; EV_Post_Code; EV_EF|_Handoff Tables; EV_Separator
EV_Event Tag;EV_EF|_Handoff Tables; EV_Separator; EV_EFI_Variable_Boot
EV_Separator

EV_Separator

EV Separator; EV_EFI_Boot_Services_Application

EV Separator;EV_EFI_Action

EV_Separator;EV_Action

EV_EF|_Variable_Driver_Config;EV_Separator

EV_Compact_Hash

EV_Event Tag;EV_Separator

EV_Event Tag;EV_Separator

<o o N w| N =o'

—_
—_

—_
N

—_
w

Table 1: A mapping between PCR indexes and types of measurement events

4 Implementation of Integrity Measurement

Measurements of Windows entities are performed by the boot manager and the Windows loader (Pre-0S in
Figure ﬁ]]. In this paragraph, we focus on the implementation of the integrity measurement mechanism in the
Windows loader. We observed that the implementation of this mechanism in the boot manager is conceptually
identical to the one presented in this section.

00 EEEEEEEE001c3918 0AOAOOOO O@ObAcdee winload!BlTpmpDriverCallback

[61 0EEREEEE ©91c3920 COEAEEGE @0b18019 winload!TpmApiCallbackTpmCall+@xca
[...]

04 9EECEERE 801c3ad4d 0REEEBOE 08a9ffbc winlead!TpmApiExtendPCR20+0x171
[-..]

06 000EA000"061c3bad 0OHEEAOO" winload {SipapMeasureEvent AndAppendToCommi tedTCGLog+0x10c | —

[...]
9a 00000000 001c3d40 0POAOE00°0ad3foc winload!0slReportKernellaunch+0x541
[-.-]

[.-]
Src = (veoid <Y ((unsigned __int64)&Dst & -(signed _ int64)(v5 != 0));
v = SipapFormatTCGLogEntr’y‘(va, v6, v7, vi6, ...);

[
[
symCryptshail((__int64)vs, Size, (__int64)aSrc + 4);

goto LABEL_24;

}
if (v22 == 11)

{
SymCryptSha256((__int64)v8, Size, (__int64)&Src + 4);
[...]

[...]
__asm
{ A J
sha256rnds2 (xmm8, xmmi®, xmme
sha256rnds2 xmmi®, xmm8, xmm@
sha256rnds2 xmm8, xmml@, xmm@

[-]

Figure 3: Integrity measurement in the Windows loader

Figure E depicts the stack and code snippets of functions executed as part of the integrity measurement mech-
anism implemented in the Windows loader. The content depicted in Figure E is as displayed by the windbg
debugger and by the /DA disassembler in the form of pseudo-code. The OslReportKernelLaunch function is
one of the functions implemented in the Windows loader that triggers integrity measurement. This is done by
queueing measurement events for processing by submitting them to the SipapMeasureEventAndAppendToCom-
mitedTCGLog function. This indicates that integrity measurements are conducted in an asynchronous manner.

SipapMeasureEventAndAppendToCommitedTCGLog first calculates hashes and therefore conducts the actual mea-
surements. It then extends the measurements into PCRs by invoking TpmApiExtendPCR.TpmApiExtendPCR con-
structs a TPM command buffer and invokes TpmApiCallbackTpmCall. This function communicates with the TPM

by invoking Bl{TpmpDriverCallback.

Operations for hash calculation are implemented as functions of the Windows loader, that is, they are software-
implemented (see SipapFormatTCGLogEntry, SymCryptSha1/256 in Figure E]. For example, if the Intel SHA ex-
tensions are present, hash calculation is performed by executing CPU instructions specifically developed for
that purpose (sha256érnds2 in Figure E].

Appendix

Measured Executables

bootmgfw.efi.MUI
tcpip.sys
WdBoot.sys
stexstor.sys
EhStorClass.sys
amdsata.sys
kd.dll
vdrvroot.sys
nvstor.sys
megasr.sys
bxvbda.sys
lsi_sss.sys
CLFS.SYS
werkernel.sys
WdFilter.sys
fvevol.sys
USBPORT.SYS
sdbus.sys
bootres.dll
lsi_sas3i.sys
ntoskrnl.exe
usbhub.sys
pdc.sys
3ware.sys
vmstorfl.sys
amdxata.sys
winhv.sys
Fs_Rec.sys
cnghwassist.sys
WppRecorder.sys
winload.efi.MUI
lsi_sas?2i.sys

winload.efi
NETIO.SYS
hvsocket.sys
vmbkmcl.sys
rdyboost.sys
mountmgr.sys
sisraid4.sys
USBD.SYS
ucx01000.sys
mcupdate_Genuinelntel.dll
arcsas.sys
FLTMGR.SYS
storufs.sys
ADP80XX.SYS
ksecdd.sys
uaspstor.sys
storvsc.sys
BOOTVID.dU
CEA.sys
vstxraid.sys
iaStorV.sys
USBSTOR.SYS
pci.sys
ksecpkg.sys
fwpkelnt.sys
ACPl.sys
iaStorAV.sys
spaceport.sys
percsas2i.sys
WMILIB.SYS
percsas3i.sys
volume.sys

cng.sys
UsbHub3.sys
Cl.dll
msisadrv.sys
Wdf01000.sys
usbehci.sys
mvumis.sys
partmgr.sys
volsnap.sys
acpiex.sys
volmgr.sys
hal.dll
PCIIDEX.SYS
volmgrx.sys
atapi.sys
pcw.sys
sbp2port.sys
NTFS.sys
ataport.SYS
amdsbs.sys
Wof.sys
storport.sys
pci.sys
cht4sxéb.sys
disk.sys
WDFLDR.SYS
WindowsTrustedRTProxy.sys
megasas.sys
scmbus.sys
pciide.sys
wfplwfs.sys

vmbus.sys
NDIS.SYS
isapnp.sys
EhStorClass.sys
tm.sys
cmimcext.sys
HpSAMD.sys
SiSRaid2.sys
usbcecgp.sys
evbda.sys
msrpc.sys
clipsp.sys
ntosext.sys
vsmraid.sys
USBXHCI.SYS
PSHED.dLL
iorate.sys
tpm.sys
intelpep.sys
hwpolicy.sys
mup.sys
stornvme.sys
fileinfo.sys
intelide.sys
storahci.sys
pcmcia.sys
ApiSetSchema.dll
EhStorTcgDrv.sys
nvraid.sys

WindowsTrustedRT.sys

lsi_sas.sys

References

[Ste16]

[Tru13]

[Truléal

[Tru1éb]

[Tru17]

Stefan Thom and Jork Loeser and Ron Aigner and Paul England and Rob Spiger and Jim Mor-
gan. Using the Windows 8 Platform Crypto Provider and Associated TPM Functionality. 2016.
https://github.com/Microsoft/TSS.MSR/blob/master/PCPTool.v11/Using%20the%20Windows%208%
20Platform%20Crypto%20Provider%20and%20Associated%20TPM%20Functionality.pdf.

Trusted Computing Group (TCG). TCG PC Client Specific TPM Interface Specification
(TIS). 2013. Version 1.3; https://trustedcomputinggroup.org/wp-content/uploads/TCG
PCClientTPMInterfaceSpecification TIS 1-3 27 03212013.pdf.

Trusted Computing Group (TCG). Trusted Computing Group (TCG): TCG EFI Protocol Specifica-
tion. 2016. https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-
rev13-160330final.pdf.

Trusted Computing Group (TCG). Trusted Platform Module Library Part 3: Commands. 2016. Family
2.0, Level 00, Revision 01.38; https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-
Part-3-Commands-01.38.pdf.

Trusted Computing Group (TCG). TCG PC Client Platform Firmware Profile Specification. 2017.
Family 2.0, Level 00, Revision 00.21; https://trustedcomputinggroup.org/wp-content/uploads/PC-
ClientSpecific_Platform Profile for TPM 2p0 Systems v21.pdf.

https://github.com/Microsoft/TSS.MSR/blob/master/PCPTool.v11/Using%20the%20Windows%208%20Platform%20Crypto%20Provider%20and%20Associated%20TPM%20Functionality.pdf
https://github.com/Microsoft/TSS.MSR/blob/master/PCPTool.v11/Using%20the%20Windows%208%20Platform%20Crypto%20Provider%20and%20Associated%20TPM%20Functionality.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMInterfaceSpecification_TIS__1-3_27_03212013.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMInterfaceSpecification_TIS__1-3_27_03212013.pdf
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v21.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-ClientSpecific_Platform_Profile_for_TPM_2p0_Systems_v21.pdf

	Introduction
	The Integrity Measurement Mechanism of Windows 10
	Windows Boot Configuration Log
	Implementation of Integrity Measurement

		2019-05-21T11:52:18+0100
	amilenkoski.client.ernw.net

