
The TPM: Communication Interfaces

Aleksandar Milenkoski)

amilenkoski@ernw.de

This work is part of theWindows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author ()).

The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung,
Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik - BSI).

Required Reading
In addition to referenced work, related work focussing on the Trusted Platform Module (TPM), part of the Win-
dows Insight series, are relevant for understanding concepts and terms mentioned in this document.

Technology Domain
The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

The TPM standard in focus is version 2.0.

1 Introduction
In this work, we discuss how the different components of the Windows 10 operating system deployed in user-
land (Section 2) and in kernel-land (Section 3), use the TPM.We focus on the communication interfaces between
Windows 10 and the TPM, which we depict in Figure 1. In addition, we discuss the construction of TPM usage
profiles, that is, information on system entities communicating with the TPM as well as on communication
patterns and frequencies (Section 3.1).

2 TPM Communication Interfaces: User-land
The components of the Windows 10 system deployed in user-land (referred to as Executable in Figure 1) can
communicatewith the TPM in twoways: direct (direct TPMcommunication in Figure 1) or abstracted (abstracted
TPM communication in Figure 1).

Executable

Legend:

IRP

imports functionalities from

tbs.dll

TBS library

User-land

Kernel-land

TPM hardware interface

TPM2

Control Area Structure[...]

[...]

Control area

[...]

[...]

Command size

Command

Response size

Response

[...]

Cryptography API: Next Generation (CNG)

bcrypt.dll
ncrypt.dll

Key storage providers Algorithm providers

PCPks.dll

PCPTPM12.dll

CNG TPM implementations

input/output

[direct TPM communication][abstracted TPM communication]

TPM export driver

tbs.sys

\Driver\ACPI
[acpi.sys]

\Driver\TPM
[tpm.sys]

TPM driver stack

manages

Figure 1: Interfaces for communicating with the TPM

2.1 Direct TPM communication
The direct TPM communication involves executing functions declared as part of the TPM Base Services (TBS) li-
brary file named tbs.dll (TBS library in Figure 1). This library file implements a number of functions, structures,
and data types for communicating with the TPM.1 Example functions are Tbsi_GetDeviceInfo for obtaining rel-
evant information about the TPM device and Tbsi_Get_OwnerAuth for obtaining the owner authorization value.
Most of the functions implemented as part of the TBS library perform TPM operations by constructing TPM
command buffers (see Section 1.3) and submitting them to the TPM device by invoking the Tbsip_Submit_Com-
mand function.2 From the perspective of user-land system entities, this function represents the communication
interface to the TPM at the lowest-level; that is, it submits commands to the TPM device in their raw form, as
byte sequences.

The submission of commands from the TBS library to the TPM involves issuing a system call to the TPM driver,

1https://msdn.microsoft.com/de-de/library/windows/desktop/aa446794(v=vs.85).aspx [Retrieved: 22/9/2017]
2https://msdn.microsoft.com/de-de/library/windows/desktop/aa446799(v=vs.85).aspx [Retrieved: 22/9/2017]

https://msdn.microsoft.com/de-de/library/windows/desktop/aa446794(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa446799(v=vs.85).aspx

passing the TPM command byte sequence in the form of (input/output) I/O request packets (IRPs).3 The system
call may be issued, for example, using the NtDeviceIoControlFile Windows application programming interface
(API) function.4

The TPM driver is implemented in the %SystemRoot%\System32\drivers\tpm.sys driver executable file. This
driver submits commands passed to it from the TBS library to the TPM device as discussed next.

Windows drivers may be structured into driver stacks, where drivers at higher levels process submitted IRPs
and submit them to drivers at lower levels. The driver at the lowest level communicates with the actual device
to which the submitted IRP is destined.5 In a given driver stack, there may be: a single function driver, which is
a driver developed by the vendor of the device handling themajority of submitted IRPs; filter drivers performing
auxiliary roles in IRP processing; and bus drivers communicating with the actual device.

With each driver that is part of a driver stack is associated a driver object and a device object of the physical
device.6 The device object is a representation of the device at the level at which the driver resides. For example,
there are functional device objects (FDOs), which are associated with functional drivers, and physical device
objects (PDOs), which are associated with bus drivers. The driver and device objects have names associated
with them so that user-land system entities can reference them in program code.7

The TPM driver is the upper layer of the TPM driver stack. On Advanced Configuration and Power Interface
(ACPI)-enabled platforms, this stack consists of the functional driver tpm.sys and the bus ACPI driver acpi.sys.
A functional device object is associated with the functional driver tpm.sys (driver object named \Driver\TPM) and
a physical device object is associated with the ACPI driver acpi.sys (driver object named \Driver\ACPI).

Following the hierarchy of the TPM driver stack, when a command in the form of an IRP is submitted to the
TPM driver tpm.sys, it passes the procession of the IRP to the ACPI driver acpi.sys. According to the Trusted
Computing Group (TCG) ACPI Specification, version 1.2, revision 8 (this is the latest TCG ACPI specification at
the time of writing [Tru17]), acpi.sys submits relevant command information to the TPM device by writing this
information at a location within a memory region starting at a specific address. This address is stored in the
field Control area ([Tru17], Table 7) of the ACPI hardware interface description table of the TPM device, named
TPM2 (TPM hardware interface and TPM2 in Figure 1).

The layout of the memory starting at the Control area address consists of several fields, among which are Com-
mand size, Command, Response size, andResponse.8 Relevant TPMcommand information iswritten in amemory
region starting at the address stored in the field Command, with a size stored in the field Command size. Once
the TPM device has finished processing the command, it returns information by storing it in a memory region
starting at the address stored in the fieldResponse, with a size stored in the fieldResponse size. This information
is then read by the drivers that are part of the TPM driver stack and passed to the issuer of the TPM command.

We now demonstrate a direct communication with the TPM through an example scenario. Through this sce-
nario we obtained an accurate insight into how the TPM device is communicated with in a direct manner. We
developed a simple application that uses the Tbsip_Submit_Command function of the TBS library to execute a
TPM command represented by the byte sequence 0 0xc0 0 0 0 0x0a 0 0 0 0x50. Figure 2 depicts a snippet of the
application’s program code for submitting the TPM command.

Using the windbg debugger operating in user-land, we set a breakpoint at Tbsip_Submit_Command to analyze
the execution of this function. Figure 3 depicts relevant aspects of the function’s execution. We observed that
Tbsip_Submit_Command issues an IRP containing TPM command information using the NtDeviceIoControlFile
Windows API function ([1] in Figure 3). NtDeviceIoControlFile submits IRPs to a device driver such that its first

3https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets [Retrieved: 22/9/2017]
4https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx [Retrieved: 22/9/2017]
5https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks [Retrieved: 22/9/2017]
6https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-device-objects [Retrieved: 22/9/2017]
7https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/object-names [Retrieved: 22/9/2017]
8https://msdn.microsoft.com/de-de/library/windows/hardware/dn974551(v=vs.85).aspx [Retrieved: 22/9/2017]

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
https://msdn.microsoft.com/en-us/library/ms648411(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-device-objects
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/object-names
https://msdn.microsoft.com/de-de/library/windows/hardware/dn974551(v=vs.85).aspx

Figure 2: Submitting a TPM command using Tbsip_Submit_Command

parameter is a handle of the device object associated with the driver.9 As per Microsoft’s function calling con-
vention, the first parameter of a function receiving a single or multiple integers as parameters is stored in the
rcx register.10 By printing out the contents of this register, we obtained the handle value 0xac ([2] in Figure 3).
We then obtained the address at which information about the object associated with this handle is stored. This
address is 0xffffac883a4a7ba0 ([3] in Figure 3). This enabled us to obtain information about the driver stack
consisting of the drivers processing the IRP, tpm.sys and acpi.sys, represented by the driver objects \Driver\TPM
(i.e. the TPM driver tpm.sys) and \Driver\ACPI (i.e., the bus ACPI driver acpi.sys, [4] in Figure 3).

[3]

[4]

[2]

[1]

Figure 3: Execution of Tbsip_Submit_Command

The TPMdrivermanages the scheduling of TPM resources and submits commands to the TPMdevice in a proce-
dural manner. Figure 4 depicts some of the functions implemented in tpm.sys, which are involved in command
processing. Figure 4 depicts a function callstack when a breakpoint we set at the SubmitCommand function was
triggered. This function is implemented as part of the TpmTransportMembase data structure (TpmTransport-

9https://msdn.microsoft.com/de-de/library/windows/desktop/ms724457(v=vs.85).aspx [Retrieved: 22/9/2017]
10https://technet.microsoft.com/en-us/library/security/zthk2dkh(v=vs.90).aspx [Retrieved: 22/9/2017]

https://msdn.microsoft.com/de-de/library/windows/desktop/ms724457(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/security/zthk2dkh(v=vs.90).aspx

Figure 4: Submission of TPM commands

MemBase::SubmitCommand in Figure 4).11, 12

We observed that TpmTransportMemBase::SubmitCommand submits commands to the TPM and it is invoked as
follows. When an IRP containing a TPM command is received by the TPM driver, it schedules the creation of a
thread handling the IRP in the Tpm20Scheduler::SchedulerThreadWrapper function. When the TPM is available
for command processing, the driver triggers the submission of the TPM command in the Tpm20Scheduler::
SubmitRequest function. The actual submission of the command to the TPM is done by TpmTransport::
DispatchCommand; that is, it invokes TpmTransportMemBase::SubmitCommand.

As previously mentioned, the ACPI driver acpi.sys passes command information to the TPM by storing the in-
formation in the memory region starting at the address specified by the Control area field of the TPM2 table.
Figure 5 depicts the contents of this table as presented by the RW utility. We observed that the value stored in
Control area is not zero. According to the TCG ACPI Specification, version 1.2, revision 8 ([Tru17], Table 7), this
indicates that the memory region starting at the address stored in this field is used as previously described.

Figure 5: The ACPI TPM2 table

After command information is passed to the TPM, it starts processing the command. The procedure of command
procession is described in ([Tru16b], Section 5). As part of this procedure, the processed command is authorized
by evaluating the provided authorization value (see [Tru16a]; Section 19 on authorization of TPM commands).

11In this work, we use the scope operator :: when referring to functions declared as part of data structures.
12There are several different implementations of the SubmitCommand function, which are implemented as part of data structures different
than TpmTransportMembase. We set breakpoints to these functions using thewindbg debugger, observing that they are not invoked during
regular system operation.

In addition, the procedure defines the behavior of the TPM in different authorization scenarios. This involves,
for example, increasing the count of failed TPM authorization attempts if the authorization fails.

2.2 Abstracted TPM communication
Windows 10 provides the Cryptography API: Next Generation (CNG) library, first introduced in Windows Vista,
for abstracting the functionalities of the TBS library. The functions implemented as part of the CNG library act
as wrappers of functions of the TBS library, adding functionalities and making their use easier.13

CNG uses the concept of cryptographic providers, where providers are entities performing cryptographic opera-
tions (e.g., hashing, digital signature verification).14 These entities may be implemented in software, hardware,
or both. There are two main types of CNG providers: algorithm and key storage providers. The former are pri-
marily used for performing basic cryptographic operations, such as hashing and signing,15 whereas the latter
are primarily used for performing key operations, such as creating and storing keys.16

CNG abstracts the TPM device in the form of a hardware-implemented cryptographic key storage and algo-
rithm provider, referred to as the Platform Cryptographic Provider.17 Microsoft’s basic software-implemented
cryptographic provider is referred to as the Microsoft Primitive Provider.18

Themajory of the functions implemented as part of CNGare implemented in the%SystemRoot%\System32\bcrypt.dll
and %SystemRoot%\System32\ncrypt.dll library files. The library files %SystemRoot%\System32\PCPks.dll and
%SystemRoot%\System32\PCPTPM12.dll implement CNG functionalities related to the TPM (CNG TPM Imple-
mentations in Figure 1). These may invoke functions implemented as part of the TBS library.

The access and use of cryptographic provider functionalities, including those of the Platform Cryptographic
Provider, is managed by CNG routers. For example, access to the key storage functionalities of the Platform
Cryptographic Provider is managed by the CNG key storage router implemented in ncrypt.dll.19

In order to verify the use of the TPMwhen the CNG library is utilized, we developed a simple application creating
an array of random data using the Platform Cryptographic Provider. Figure 6 depicts a snippet of the applica-
tion’s program code, where the BcryptOpenAlgorithmProvider function is used for loading and initializing this
provider.20

We set a breakpoint atBcryptOpenAlgorithmProvider. We observed that it dynamically loads the CNG TPM imple-
mentations (i.e., the library files PCPks.dll and PPCPTPM12.dll) and the TBS library (i.e., the library file tbs.dll);
see Figure 7. We also observed that TPM command execution is performed by invoking the Tbsip_Submit_Com-
mand function of the TBS library (see paragraph ’Direct TPM communication’).

3 TPM Communication Interfaces: Kernel-land
The components of the Windows 10 system deployed in kernel-land can communicate with the TPM by invok-
ing functions implemented in the TPM export driver (see Figure 1). Export drivers are kernel-mode library
files exporting routines to the kernel or other drivers.21 The TPM export driver is implemented in %System-

13https://msdn.microsoft.com/de-de/library/windows/desktop/aa376210%28v=vs.85%29.aspx [Retrieved: 22/9/2017]
14https://msdn.microsoft.com/en-us/library/windows/desktop/bb931380(v=vs.85).aspx [Retrieved: 22/9/2017]
15https://msdn.microsoft.com/en-us/library/windows/desktop/bb931354(v=vs.85).aspx [Retrieved: 22/9/2017]
16https://msdn.microsoft.com/en-us/library/windows/desktop/bb931355(v=vs.85).aspx [Retrieved: 22/9/2017]
17https://msdn.microsoft.com/en-us/library/windows/hardware/hh998513(v=vs.85).aspx [Retrieved: 22/9/2017]
18https://msdn.microsoft.com/en-us/library/windows/desktop/aa375479(v=vs.85).aspx [Retrieved: 22/9/2017]
19https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778(v=vs.85).aspx [Retrieved: 22/9/2017]
20https://msdn.microsoft.com/de-de/library/windows/desktop/aa375479(v=vs.85).aspx [Retrieved: 22/9/2017]; the function’s third param-
eter with a value of MS_PLATFORM_CRYPTO_PROVIDER specifies the Platform Cryptographic Provider.

21https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-export-drivers [Retrieved: 22/9/2017]

https://msdn.microsoft.com/de-de/library/windows/desktop/aa376210%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb931380(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb931354(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb931355(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh998513(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375479(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778(v=vs.85).aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/aa375479(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-export-drivers

Figure 6: Loading and initializing the Platform Cryptographic Provider

Figure 7: Dynamic loading of TPM-related library files

Root%\System32\drivers\tbs.sys. It represents the kernel-mode implementation of the TBS library; that is, it
implements the same functions as this library, modified for operation in kernel-mode. For example, instead
of issuing a system call using the NtDeviceIoControlFile function (see Figure 3), which can be invoked only from
user-mode, the Tbsip_Submit_Command function implemented in the TPM export driver issues IRPs by invok-
ing the ZwDeviceIoControlFile function. ZwDeviceIoControlFile is the kernel-mode counterpart of NtDeviceIoCon-
trolFile.22

3.1 TPM Usage Profiles
In Section 2 and Section 3, we observed that TPM commands are sent in the form of IRPs to the TPM driver
tpm.sys using the NtDeviceIoControlFile or the ZwDeviceIoControlFile function. We aim at automating the col-
lection of information identifying user processes or the kernel communicating with the TPM. We also aim at
collecting relevant related information, such as communication patterns and frequencies. We refer to this in-
formation as TPM usage profile and developed a script to gather it (see Appendix, section ’TPMUsage Profiler’).

Once a breakpoint at NtDeviceIoControlFile or ZwDeviceIoControlFile is triggered, the script identifies the target
driver of the IRP. This is based on the handle value passed as the first parameter of NtDeviceIoControlFile or
ZwDeviceIoControlFile. In addition, the script displays relevant information, such as:

• timestamp information on the invocation of NtDeviceIoControlFile or ZwDeviceIoControlFile;

• the driver stack of the driver to which an IRP is being sent;

• the process ID (PID), name, and command parameters on the user process (if any) sending an IRP to the
driver;

• the name of the driver object associated with the driver to which an IRP is being sent.

Since the script provides relevant information at the ingress points to the TPM driver tpm.sys (i.e., the functions
NtDeviceIoControlFile and ZwDeviceIoControlFile), it enables the construction of comprehensive TPM usage pro-

22https://msdn.microsoft.com/en-us/library/windows/hardware/ff566441(v=vs.85).aspx [Retrieved: 22/9/2017]

https://msdn.microsoft.com/en-us/library/windows/hardware/ff566441(v=vs.85).aspx

files. The output of the script can be stored into a file using the .logopen and .logclose windbg commands for
subsequent parsing and constructing TPM usage profiles. For example, in the Appendix, section ’TPM Usage’,
we provide a table listing user-land executables (column ’Executable’) that submit commands to the TPM until
a user is presented with the login screen at system booting. This table also presents relevant parameters (col-
umn ’Parameters’) and the name of the entity implemented in the executable (column ’Entity’). We emphasize
that the executable list presented in the Appendix is specific for the platformwhere the Windows 10 systemwas
installed on. This list may differ for other platforms, depending on their configurations, for example, configu-
rations enabling BitLocker.23

23https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-overview [Retrieved: 22/9/2017]

https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-overview

Appendix
TPM Usage Profiler
This script can also be found in the folder files of the Windows Insight file repository, under the name windbg_-
handle_drivername.wds.

$$ ** Scr i p t usage : [func t i on breakpoint] ”$$>a <[p a t h_ t o_ s c r i p t _ f i l e] [System address] ”
$$ [func t i on breakpoint] : a breakpoint to a s ing le or mul t ip le *Dev i ce IoCon t ro lF i l e func t i ons
$$ (e . g . , ’ bu n t d l l ! NtDev ice IoContro lF i le ’ , bm / a nt !* Dev i ce IoCon t ro lF i l e)
$$ [pa t h_ t o_ s c r i p t _ f i l e] : path to t h i s s c r i p t f i l e
$$ [System address] : the address of the EPROCESS struc ture of the kernel System thread . I t can be obtained by issu ing ’ ! process 4 0 ’

. echotimestamps 1

r? $t18 = @rcx & 0 x f f f f f f f f f f f f f f f c

. i f ((@$t18 & 0x80000000) == 0x80000000)
{

r ? $t0 = ((_EPROCESS*)$ { $arg1 })−>ObjectTable
}
. e lse
{

r ? $t0 = @$proc−>ObjectTable
}

r ? $t1 = @$t0−>TableCode

r? $t19 = @$t1 & 0x3

r? $t1 = @$t1 & (~0 x3)

. i f (@$t19 == 0)
{

r ? $t3 = @$t1 + (4* (@$t18&0x3fc))
}

. i f (@$t19 == 1)
{

r ? $t3 = ((unsigned in t64 *) (@$t1 + @$ptrsize * (((@$t18&0x3fc00)) > >10))) [0] + 4* ((@$t18&0x3fc))
}

. i f (@$t19 == 2)
{

r ? $t17 = ((unsigned in t64 *) (@$t1 + @$ptrsize * (((@$t18&0x3fc0000)) > >18))) [0]
r ? $t3 = ((unsigned in t64 *) (@$t17 − 0x1 + @$ptrsize * (((@$t18&0x3fc00)) > >10))) [0] + 4* ((@$t18&0x3fc))

}

r ? $t4 = (((_HANDLE_TABLE_ENTRY*) @$t3) −> Ob jec tPo in terB i t s << 4) | 0 x f f f f000000000000

r? $t4 = @$t4 + 0x30

r? $t5 = ((_FILE_OBJECT*) @$t4) −> DeviceObject

r ? $t6 = ((_DEVICE_OBJECT*) @$t5) −> Dr i verOb jec t

r ? $t7 = (unsigned in t64) @$t6 + 0x38

r $t8 = po i (@$t7 + 0x008)

. i f ((@$t18 & 0x80000000) == 0x80000000)
{

. p r i n t f ”****************\n ” ;

. p r i n t f ” Image /Command: Kernel \ n”

. p r i n t f ” Dr i ver assoc iated to IRP−ed dev ice : %mu\n” , @$t8
! devstack @$t5
. p r i n t f ”****************\n ” ;

}

. e lse
{

. p r i n t f ”****************\n ” ;
r ? $t15 = ((unsigned in t64 *) ((unsigned in t64) (& ((@$proc−>Peb)−>ProcessParameters)−>CommandLine) + 0x008)) [0]
. p r i n t f ” Image /Command: %mu\n” , @$t15
r? $t15 = (unsigned in t64) (@$proc−>UniqueProcessId)
. p r i n t f ”PID : %d \n ” , @$t15
. p r i n t f ” Dr i ver assoc iated to IRP−ed dev ice : %mu\n” , @$t8
! devstack @$t5
. p r i n t f ”****************\n ” ;

}
g

TPM Usage
Executable Parameters Entity
smss.exe Session manager
lsass.exe Local security authority
svchost.exe -k netsvcs BitLocker Drive Encryption Service
taskhostw.exe Host process for Windows tasks
svchost.exe -k netsvcs Microsoft Account Sign-in Assistant

References
[Tru16a] Trusted Computing Group (TCG). Trusted Platform Module Library Part 1: Architecture. 2016. https:

//trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf.

[Tru16b] Trusted Computing Group (TCG). Trusted Platform Module Library Part 3: Commands. 2016. Family
2.0, Level 00, Revision 01.38; https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-
Part-3-Commands-01.38.pdf.

[Tru17] Trusted Computing Group (TCG). TCG ACPI Specification. 2017. Family 1.2 and 2.0, Version 1.2, Revi-
sion 8; https://trustedcomputinggroup.org/wp-content/uploads/TCG_ACPIGeneralSpecification_v1.
20_r8.pdf.

https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_ACPIGeneralSpecification_v1.20_r8.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_ACPIGeneralSpecification_v1.20_r8.pdf

	Introduction
	TPM Communication Interfaces: User-land
	Direct TPM communication
	Abstracted TPM communication

	TPM Communication Interfaces: Kernel-land
	TPM Usage Profiles

		2019-05-21T11:51:44+0100
	amilenkoski.client.ernw.net

