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Executive Summary

Modern virtualized service infrastructures expose attack vectors that enable attacks of high
severity, such as attacks targeting hypervisors. A malicious user of a guest VM (virtual machine)
may execute an attack against the underlying hypervisor via hypercalls, which are software
traps from a kernel of a fully or partially paravirtualized guest VM to the hypervisor. The
exploitation of a vulnerability of a hypercall handler may have severe consequences such as
altering hypervisor’s memory, which may result in the execution of malicious code with hypervisor
privilege. Despite the importance of vulnerabilities of hypercall handlers, there is not much
publicly available information on them. This significantly hinders advances towards securing
hypercall interfaces. In this work, we provide in-depth technical information on publicly disclosed
vulnerabilities of hypercall handlers. Our vulnerability analysis is based on reverse engineering
the released patches fixing the considered vulnerabilities. For each analyzed vulnerability, we
provide background information essential for understanding the vulnerability, and information
on the vulnerable hypercall handler and the error causing the vulnerability. We also show how
the vulnerability can be triggered and discuss the state of the targeted hypervisor after the
vulnerability has been triggered.

Keywords:1

Security and Privacy - Systems security - Operating systems security - Virtualization and security

1The keywords used here are defined as part of The 2012 ACM Computing Classification System [19].
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Section 1. Introduction

1 Introduction

Virtualized environments are becoming increasingly ubiquitous with the growing proliferation
of virtualized data centers and cloud environments. However, security concerns are still one
of the greatest showstoppers for the wide adoption of cloud computing [23]. Attackers are
actively exploring virtualization-specific attack surfaces, such as hypervisors. Attacks targeting
hypervisors are of high severity since they may result in crashing the hypervisors including all
guest VMs (virtual machines) running on top of them or in altering hypervisors’ memory.

A malicious guest VM user may execute an attack against the underlying hypervisor via
hypercalls, which are software traps from a kernel of a fully or partially paravirtualized guest
VM to the hypervisor. Hypercalls enable intrusion into vulnerable hypervisors initiated from
a malicious guest VM kernel. As Rutkowska et al. [25] demonstrate, the exploitation of a
vulnerability of a hypercall handler (i.e., a hypercall vulnerability) may lead to altering the
memory of the targeted hypervisor, which enables, for example, the execution of malicious code
with hypervisor privilege.

Given the severity of attacks triggering hypercall vulnerabilities, the characterization of the
hypercall attack surface is a priority since it is crucial for better understanding the security
threats posed by hypercall interfaces. The lack of such an understanding significantly hinders
advances towards monitoring and securing these interfaces. In-depth technical information on
hypercall vulnerabilities is a requirement for characterizing the hypercall attack surface. However,
such information is currently very limited. Publicly disclosed vulnerability reports describing
hypercall vulnerabilities (e.g., CVE-2013-4494, CVE-2013-3898) are typically the sole source
of information and provide only high-level descriptions. There is also no publicly available
information on attacks triggering hypercall vulnerabilities performed in practice.

The goal of this work is to provide technical information on hypercall vulnerabilities needed
for the improvement of the security of hypercall interfaces (e.g., information on the errors that
caused the vulnerabilities and how the vulnerabilities can be triggered). To this end, we analyzed
all publicly disclosed hypercall vulnerabilities that we found by searching major CVE (Common
Vulnerability and Exposures) report databases (e.g., cvedetails [22]) based on relevant keywords,
such as names of operations of hypercalls. In this work, we focus on the vulnerabilities described
in the vulnerability reports CVE-2012-3494, CVE-2012-3495, CVE-2012-3496, CVE-2012-4539,
CVE-2012-5510, CVE-2012-5513, CVE-2012-5525, and CVE-2013-1964. These vulnerabilities
are representative of the vulnerabilities that we analyzed in terms of the errors causing them
and the ways in which they can be triggered. The vulnerabilities considered in this work are
from the Xen hypervisor [20], which has the most extensive hypercall interface as opposed to
other hypervisors, such as KVM [24]. The considered vulnerabilities are in the handlers of the
hypercalls memory op, gnttab op, set debugreg, physdev op, and mmuext op.

Our approach for analyzing a hypercall vulnerability consisted of the following steps: (i)
analysis of the CVE report describing the vulnerability and other relevant information sources, for
example, security advisories; (ii) reverse engineering of the released patch fixing the vulnerability,
and (iii) developing proof-of-concept code for triggering the vulnerability. For each considered
vulnerability, we provide background information essential for understanding the vulnerability,
and information on the vulnerable hypercall handler (i.e., information about the workflow, and
input and output data of the handler) and the error causing the vulnerability. We also show
how the vulnerability can be triggered and discuss the state of the targeted hypervisor after the
vulnerability has been triggered.

We stress that we provide information on a vulnerable hypercall handler to the extent that
is relevant for understanding a given vulnerability, for example, we discuss only some input
parameters of the handler. We also stress that we do not provide proof-of-concept code for
triggering the considered vulnerabilities ready for use. We present only the hypercalls executed
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Section 2. Information on hypercall vulnerabilities

as part of an attack triggering a given hypercall vulnerability, and the values of relevant hypercall
parameters (i.e., parameters identifying the executed hypercalls and, where applicable, parameters
with values specifically crafted for triggering the vulnerability). Finally, we stress that we do not
demonstrate vulnerability exploitation where it is possible (e.g., malicious code execution). We
focus instead on the errors causing the considered vulnerabilities, the activities for triggering
them, and the effects of triggering the vulnerabilities on the state of the vulnerable hypervisors.
We argue that the information that we provide is relevant for better understanding the security
threats that hypercall interfaces pose, which will help to focus approaches for improving the
security of hypervisors.

2 Information on hypercall vulnerabilities

2.1 Hypercall memory op

The memory op hypercall is used for managing the memory of a guest VM, for example, altering
the layout of a given memory region.1 In the handler of memory op, the different types of memory
addresses that the Xen hypervisor supports for abstracting physical memory available to guest
VMs are used for accessing locations in memory:

◦ virtual address - an address of a location in the virtual memory of a guest VM;
◦ GPFN (Guest Pseudo-Physical Frame Number) - an address of a page frame that

is a physical memory address from the perspective of a guest VM;
◦ GMFN (Guest Machine Frame Number) - an address of a page frame that is a

machine address from the perspective of a guest VM;
◦ MFN (Machine Frame Number) - an address of a page frame that is a real machine

address.

For accessing contiguous memory blocks, the different types of addresses mentioned above are
used for accessing extents of a given order such that an extent consists of 2order memory pages.

Mappings between the different types of memory addresses are stored in tables for that
purpose. Mappings between virtual addresses and GPFNs are stored in a page table, between
GPFNs and GMFNs in a physical-to-machine table, and between GMFNs and GPFNs in a
machine-to-physical table.

We refer to reader to [18] and [21] for further information on how the Xen hypervisor manages
memory.

Vulnerability CVE-2012-3496

“XENMEM populate physmap in Xen 4.0, 4.1, and 4.2, and Citrix XenServer 6.0.2
and earlier, when translating paging mode is not used, allows local PV OS guest
kernels to cause a denial of service (BUG triggered and host crash) via invalid flags
such as MEMF populate on demand.” [3]

XENMEM populate physmap is an operation of the memory op hypercall, which is used for
requesting extents from the hypervisor. XENMEM populate physmap is also used for marking
extents as “populate-on-demand”. Extents marked as “populate-on-demand” can be assigned to
the physical memory of a given guest VM, or removed from it, on demand at run time.

Input:2 XENMEM populate physmap takes as input a structure of type
xen memory reservation. which is defined as:

1We refer the reader to [9] for more information on the functionalities of the memory op hypercall.
2As in Xen of version 4.1.0.
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Section 2. Information on hypercall vulnerabilities

struct xen memory reservation {
GUEST HANDLE(xen pfn t) extent start;
unsigned int extent order;
unsigned int address bits;
. . .
}

extent start stores the virtual address of the head of an array that contains memory ad-
dresses (GPFNs) at which the extents obtained from the hypervisor are to be mapped, or
addresses (GPFNs) of the beginnings of the extents that are to be marked as “populate-on-
demand”; extent order stores the order of a single extent; address bits stores the flags of the
XENMEM populate physmap hypercall operation, one of which is MEMF populate on demand.
MEMF populate on demand is enabled when XENMEM populate physmap is used for marking
extents as “populate-on-demand”.

Output:2 On success, XENMEM populate physmap returns the number of the obtained
extents or of the extents marked as “populate-on-demand”. In case XENMEM populate physmap
has been used for obtaining extents, the array that starts at the virtual address stored in
extent start is populated with the memory addresses (MFNs) of the beginnings of the obtained
extents. On failure, XENMEM populate physmap returns an error code (typically a negative
integer value).

Workflow of the vulnerable hypercall handler:2

do memory op (XENMEM populate physmap, (struct xen memory reservation) res)
. . .
call populate physmap(...)

. . .
for each GPFN in res.extent start

if MEMF populate on demand
call guest physmap mark populate on demand(...)

call BUG ON(...)
. . .

return
. . .

else:
. . .

. . .
return

return

Description of the vulnerability: In guest physmap mark populate on demand, a function
invoked in the handler of XENMEM populate physmap, the BUG ON macro is used for checking
whether the guest VM from where the memory op hypercall has been invoked has the “translated
paging” mode disabled. BUG ON is a macro that crashes the system where it is executed if the
condition that it evaluates is true. If guest physmap mark populate on demand is invoked from a
paravirtualized guest VM (note that paravirtualized guest VMs have the “translated paging” mode
disabled by default), the condition that the BUG ON macro evaluates is true and the hypervisor
crashes. Thus, CVE-2012-3496 can be triggered by invoking the XENMEM populate physmap
hypercall operation, with the MEMF populate on demand flag enabled, from a paravirtualized
guest VM.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-3496 was released on 5
September 2012 and is available at [12]. The patch replaces the BUG ON macro with an if
clause.

Triggering CVE-2012-3496: We triggered CVE-2012-3496 in the following environment:

3



Section 2. Information on hypercall vulnerabilities

◦ guest VM: OS - Debian Squeeze (64 bit), kernel - 2.6.32-5-amd64;
◦ host VM: OS - Debian Squeeze (64 bit), kernel - 2.6.32-5-amd64;
◦ hypervisor: Xen 4.1.0.

The attack that we executed is depicted in Figure 2.1.

Guest VM!
(``translated paging’’ mode disabled)!

Hypervisor!

HYPERVISOR_update_va_mapping (…)!

Crash!

.address_bits = (1<<16); //MEMF_populate_on_demand!

HYPERVISOR_memory_op!
(XENMEM_populate_physmap, &reservation);!

0

x8!

Figure 2.1: An attack triggering CVE-2012-3496

Post-attack state of the hypervisor: The hypervisor crashes when the BUG ON macro
is executed.

Vulnerability CVE-2012-5513

“The XENMEM exchange handler in Xen 4.2 and earlier does not properly check the
memory address, which allows local PV guest OS administrators to cause a denial
of service (crash) or possibly gain privileges via unspecified vectors that overwrite
memory in the hypervisor reserved range.” [6]

XENMEM exchange is an operation of the memory op hypercall, which is used for modifying
the layout of a memory region of a guest VM by “exchanging” extents between the guest VM and
the hypervisor. The latter is performed by remapping a set of memory addresses (GPFNs) of
beginnings of extents of the guest VM to memory addresses (GMFNs) of beginnings of extents,
requested by the guest VM and allocated by the hypervisor for the “exchange” operation. For
instance, XENMEM exchange can be used for defragmenting memory such that, for example, 2
extents consisting of 2 pages are exchanged for a single extent consisting of 4 pages.

Input:3 XENMEM exchange takes as input a structure of type xen memory exchange defined
as:

struct xen memory exchange {
struct xen memory reservation in;
struct xen memory reservation out;
xen ulong t nr exchanged;
}

, where xen memory reservation is defined as:

3As in Xen of version 4.1.0.
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struct xen memory reservation {
GUEST HANDLE(xen pfn t) extent start;
unsigned int extent order;
xen ulong t nr extents;
. . .
}

The fields of the (struct xen memory exchange) in structure store information about the
extents that are to be “exchanged”. in.nr extents stores the number of extents to be “exchanged”;
in.extent start stores the virtual address of the head of an array that contains the memory
addresses (GMFNs) of the beginnings of the extents to be “exchanged”; in.extent order stores
the order of a single extent.

The fields of the (struct xen memory exchange) out structure store information about the
extents requested from the hypervisor. out.nr extents stores the number of requested extents;
out.extent order stores the order of a single requested extent; out.extent start stores the virtual
address of the head of an array that consists of GPFNs at which the requested extents are to be
mapped in guest VM’s memory.

Output:3 On success, XENMEM exchange returns 0. The array that starts at the address
stored in (struct xen memory exchange) out.extent start is populated with the memory addresses
(GMFNs) of the beginnings of the extents allocated by the hypervisor for the “exchange” operation.
On failure, XENMEM exchange returns an error code (typically a negative integer value).

Workflow of the vulnerable hypercall handler:3

do memory op (XENMEM exchange, (struct xen memory exchange) exch)
call memory exchange (XENMEM exchange, (struct xen memory exchange) exch)

. . .
allocate extent(s) of 2exch.in.order pages
store the addresses (GMFNs) of the beginnings of the allocated extents in array mfn
. . .
call copy to guest offset(...)

populate memory beginning at exch.out.extent start with the GMFNs in mfn
return
. . .

return
return

Description of the vulnerability: The function copy to guest offset(to, offset, from,
size), which is invoked in the handler of the XENMEM exchange hypercall operation, copies data
from a virtual address in hypervisor context (from) to a virtual address in guest VM context
(to). For the sake of performance, copy to guest offset(to, offset, from, size) did not perform
value validation of the from and to parameters. As a result, a malicious VM user can invoke

copy to guest offset(to, offset, from, size) such that to is an address reserved for use by the
hypervisor, which leads to overwriting hypervisor’s memory. CVE-2012-5513 can be triggered by
invoking the XENMEM exchange hypercall operation with an address reserved for use by the
hypervisor stored in the (struct xen memory exchange) out.extent start parameter.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-5513 was released on 3 Decem-
ber 2012 and is available at [15]. The patch inserts an invocation of the function guest handle okay
in the handler of the XENMEM exchange hypercall operation, which validates the values of
the from and to parameters of copy to guest offset. For instance, a valid virtual address is an
address that is not reserved for use by the hypervisor.

Triggering CVE-2012-5513: We triggered CVE-2012-5513 in the following environment:

◦ guest VM - OS: Debian Squeeze (64 bit), kernel 2.6.32-5-amd64;

5



Section 2. Information on hypercall vulnerabilities

Guest VM! Hypervisor!

HYPERVISOR_update_va_mapping (…)!

Crash!
.out.nr_extents = 5;!
.out.extent_start = 0xFFFF808000000000;!

HYPERVISOR_memory_op!
(XENMEM_exchange, &exchange);!

0

x32!

Figure 2.2: An attack triggering CVE-2012-5513

◦ host VM - OS: Debian Squeeze (64 bit), kernel 2.6.32-5-amd64;
◦ hypervisor - Xen 4.1.0.

The attack that we executed is depicted in Figure 2.2.

Post-attack state of the hypervisor: When CVE-2012-5513 is triggered, the memory
region of the hypervisor beginning at the address stored in (struct xen memory exchange)
out.extent start is overwritten with the memory addresses (GMFNs) of the beginnings of the
extents allocated by the hypervisor for the “exchange” operation. Thus, an attacker cannot
control the values with which the hypervisor’s memory is overwritten. The amount of data
written to the hypervisor’s memory is (struct xen memory exchange) out.nr extents bytes.

Triggering CVE-2012-5513 may result in a crash of the hypervisor or corrupting its state.
Whether the hypervisor crashes depends on which region of the hypervisor’s memory is over-
written. An attacker can specify a memory region for overwriting by storing values in the
parameters (struct xen memory exchange) out.extent start and (struct xen memory exchange)
out.nr extents. For instance, when we triggered CVE-2012-5513 in our testbed environment,
for the values of 0xFFFF808000000000 and 32, and 0xFFFF808000000000 and 16, of (struct
xen memory exchange) out.extent start and (struct xen memory exchange) out.nr extents, re-
spectively, the hypervisor crashed. For the values of 0xFFFF808000000000 and 8 of (struct
xen memory exchange) out.extent start and (struct xen memory exchange) out.nr extents, the
hypervisor continued operating with its memory overwritten.

2.2 Hypercall gnttab op

The gnttab op hypercall is used for managing grant tables. Grant tables provide a mechanism
for sharing memory between guest VMs (domains in Xen terminology) running on top of a
Xen hypervisor; that is, it enables the sharing of page frames by granting page frame access
permissions to domains or transferring ownerships of pages between domains. Each domain
maintains a grant table, which is shared with the hypervisor. A grant table consists of grant table
entries (i.e., grants) indexed by grant references (i.e., grefs). In order to access a page frame
for which it needs an access permission, a domain first has to acquire the grant that grants the
access permission from the domain that has issued the grant. When an acquired grant is not
needed anymore, it is released.

There are version 1 and version 2 grant tables. The format of a grant table entry of a
version 1 grant table is [gref ][domid][frame][flags], where gref is a grant reference, domid is the
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Section 2. Information on hypercall vulnerabilities

identification number of domain to which permissions are granted, frame is the MFN of the page
frame for which permissions are granted, and flags are the permissions granted (e.g., read, write,
or read and write permissions), which are also referred to as status of a grant table entry.

Grant tables of version 2, in addition to grants of the format mentioned above, support
transitive grants. Transitive grants are used for granting transitive permissions such that a
domain issues a grant that refers to a grant issued by another domain.

For the sake of performance, the status of grant table entries of a grant table of version 2 are
stored in status frames, which are separate from the frames where the rest of the grant table
entries are stored.

There are shared and active grants. Shared grants are grants issued by a domain. Active
grants are grants that are in use (i.e., that are acquired) at a given time. A transitive active
grant has the fields trans domain and trans gref, where trans domain is the domain that has
issued the grant to which the transitive grant refers, and trans gref is the reference of the grant
to which the transitive grant refers.

For in-depth information on the grant table mechanism of the Xen hypervisor we refer the
reader to [18] and [21].

Vulnerability CVE-2012-4539

“Xen 4.0 through 4.2, when running 32-bit x86 PV guests on 64-bit hypervisors,
allows local guest OS administrators to cause a denial of service (infinite loop and
hang or crash) via invalid arguments to GNTTABOP get status frames, aka Grant
table hypercall infinite loop DoS vulnerability.” [4]

GNTTABOP get status frames is an operation of the grant table op hypercall, which is used
for retrieving MFNs of status frames (i.e., status frame MFNs) of a domain.

Input:4 GNTTABOP get status frames takes as input a structure of type gnt-
tab get status frames defined as:

struct gnttab get status frames {
uint32 t nr frames;
domid t dom;
int16 t status;
XEN GUEST HANDLE(uint64 t) frame list;
}

nr frames stores the number of requested status frame MFNs; dom stores the identification
number of the domain whose status frame MFNs are requested; frame list stores the virtual
address of the head of an array where status frame MFNs are to be stored upon successful
completion of the GNTTABOP get status frames operation.

Output:4 On success, a return code is stored in (struct gnttab get status frames) status and
the list starting at the address stored in struct gnttab get status frames) frame list is populated
with status frame MFNs. On failure, XENMEM populate physmap returns an error code (typically
a negative integer value).

Workflow of the vulnerable hypercall handler:4

compat grant table op(GNTTABOP get status frames, (struct gnttab get status frames) gf, int count
= 1)

rc = 0
i = 0
for i < count and rc = 0

. . .

4As in Xen of version 4.1.2.
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if count = 1
call gnttab get status frames(gf, ...)

. . .
if gf.nr frames > the number of status frames of domain gf.dom

gf.status = GNTST general error
else

. . .
gf.status = GNTST okay

return
if gf.status = GNTST okay

increment i to gf.nr frames
. . .

return

Description of the vulnerability: In the hypercall handler compat grant table op, a for
cycle loops until the value of the variable i, which is initialized to 0, is smaller than the value
of the input parameter count, which has to be 1. In compat grant table op, the value of the
variable i is incremented to the value of the input parameter (struct gnttab get status frames)
nr frames only if (struct gnttab get status frames) status stores the value of the constant vari-
able GNTST okay. The value of (struct gnttab get status frames) status is set in the function
gnttab get status frames, which is invoked in compat grant table op. gnttab get status frames
sets the value of (struct gnttab get status frames) status to the value of GNTST okay only if
the value of the input parameter (struct gnttab get status frames) nr frames is smaller than the
number of status frames of the domain whose identification number is stored in the parameter
(struct gnttab get status frames) dom.

CVE-2012-4539 can be triggered by invoking GNTTABOP get status frames such that the
value of the input parameter (struct gnttab get status frames) nr frames is greater than the
number of status frames of the domain whose identification number is stored in the parame-
ter (struct gnttab get status frames) dom. This results in infinite looping of the for cycle in
compat grant table op.

In order to trigger CVE-2012-4539, one has to set the value of (struct gnttab get status frames)

nr frames to a value greater than dnr grants×sizeof(uint16 t)
PAGE SIZE e, where nr grants is the num-

ber of grants issued by the domain whose identification number is stored in (struct gnt-
tab get status frames) dom, PAGE SIZE is the size of a single page of the domain, and uint16 t
is the size of a variable of type unsigned 16-bit integer.

Since the erroneous code is in the handler compat grant table op, CVE-2012-4539 can be
triggered only from a 64-bit guest VM running on top of a 32-bit host VM.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-4539 was released on 13
November 2012 and is available at [13]. The patch modifies compat grant table op such that
the value of i is set to 1, which is equal to the value of count, if the value of (struct gnt-
tab get status frames) status is not equal to the value of GNTST okay. This prevents the for
cycle in compat grant table op from looping indefinitely.

Triggering CVE-2012-4539: We triggered CVE-2012-4539 in the following environment:

◦ guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ host VM - OS: Ubuntu Precise (64 bit), kernel 3.8.0-29-generic;
◦ hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure 2.3.

Post-attack state of the hypervisor: When we triggered CVE-2012-4539 in our testbed
environment, the guest VM from where we invoked GNTTABOP get status frames hanged.
When we issued the xm/xl destroy command to shutdown the non-responsive guest VM, the

8
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Guest VM!
(64 bit)!

Hypervisor!
(32 bit host VM)!

Crash!
.nr_frames = 2;!

HYPERVISOR_gnttab_op!
(GNTTABOP_get_status_frames, &gf)!

Figure 2.3: An attack triggering CVE-2012-4539

hypervisor crashed. The hypervisor did not crash when we issued the xm/xl shutdown command
to shutdown, and the xm/xl reboot command to reboot, the non-responsive guest VM.

Vulnerability CVE-2012-5510

“Xen 4.x, when downgrading the grant table version, does not properly remove the
status page from the tracking list when freeing the page, which allows local guest
OS administrators to cause a denial of service (hypervisor crash) via unspecified
vectors.” [5]

The GNTTABOP set version is an operation of the grant table op hypercall, which is used
for downgrading (from version 2 to version 1) or upgrading (from version 1 to version 2) grant
tables.

Input:5 GNTTABOP set version takes as input a structure of type gnttab set version defined
as:

struct gnttab set version {
uint32 t version;
}

version stores the version to which the grant table of the domain from where GNT-
TABOP set version is invoked is to be set.

Output:5 On success, GNTTABOP set version returns 0 and the version of the grant table
from where GNTTABOP set version has been invoked is stored in (struct gnttab set version)
version. On failure, GNTTABOP set version returns an error code (typically a negative integer
value).

Workflow of the vulnerable hypercall handler:5

do grant table op(GNTTABOP set version, ...)
call gnttab set version(...)

. . .
if upgrading grant table

call gnttab populate status frames(...)
allocate status frames

return
if downgrading grant table

call gnttab unpopulate status frames(...)
release status frames

return
. . .

return
return

5As in Xen of version 4.1.2.
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Description of the vulnerability: The function gnttab unpopulate status frames, which is
invoked in the handler of the GNTTABOP set version hypercall operation, releases allocated
status frames when a grant table is downgraded. However, gnttab unpopulate status frames
does not fully perform the procedure for releasing status frames; that is, it does not remove the
nodes that are associated with the status frames being released from the xenpage list linked
list. xenpage list is a list of nodes that contain information about frames allocated from the
hypervisor’s heap memory space for the needs of a given guest VM.

Since gnttab unpopulate status frames does not remove from xenpage list the nodes associated
with the status frames, subsequent allocation of the same frames leads to adding nodes to
xenpage list that are duplicates of the nodes that have not been removed by gnttab unpopulate
status frames. This is effectively a corruption of xenpage list. The gnttab populate status frames

function, which is invoked in the handler of GNTTABOP set version when a grant table is
upgraded, may be used for allocating the same frames that have been released when a grant
table has been downgraded.

CVE-2012-5510 can be triggered by continuously allocating and releasing status frames,
which eventually leads to corruption of xenpage list ; that is, CVE-2012-5510 can be triggered
by continuously upgrading and downgrading a grant table. When a corruption of xenpage list
occurs depends on the amount of free heap memory of the targeted hypervisor as well as the
memory allocating mechanism used.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-5510 was released on 3 Decem-
ber 2012 and is available at [14]. The patch modifies the function gnttab unpopulate status frames
such that it inserts an invocation of the function put page. put page removes from xenpage list
the nodes associated with the status frames being released when a grant table is downgraded.

Triggering CVE-2012-5510: We triggered CVE-2012-5510 in the following environment:

◦ guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure 2.4.

Post-attack state of the hypervisor: Depending on the use of xenpage list after it has
been corrupted, triggering CVE-2012-5510 may result in crash of the targeted hypervisor or
may corrupt its state. The hypervisor crashed when we triggered CVE-2012-5510 in our testbed
environment.

Vulnerability CVE-2013-1964

“Xen 4.0.x and 4.1.x incorrectly releases a grant reference when releasing a non-v1,
non-transitive grant, which allows local guest administrators to cause a denial of
service (host crash), obtain sensitive information, or possible have other impacts via
unspecified vectors.” [8]

GNTTABOP copy is an operation of the grant table op hypercall, which is used for copying
memory pages from a source domain (SD) (i.e., the domain to which the page being copied is
allocated) to a destination domain (DD) (i.e., the domain to which the page is copied) with
respect to the data read and write permissions set by the SD and/or the DD using grant tables.
GNTTABOP copy can be invoked from the SD, the DD, or a domain that is neither the SD
or the DD. The domain from where GNTTABOP copy is invoked is called the local domain,
whereas the other domains involved in copying pages are called remote domains.

Input:6 GNTTABOP copy takes as input a structure of type gnttab copy defined as:

6As in Xen of version 4.1.2.
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Guest VM! Hypervisor!

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

Crash!

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

.!

.!0x58!

.version=1;!

.version=2;!

0

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

.version=1;!

Figure 2.4: An attack triggering CVE-2012-5510

struct gnttab copy {
struct {

union {
grant ref t ref;
xen pfn t gmfn;
} u;
domid t domid;
. . .
} source, dest;
uint16 t len;
uint16 t flags;
int16 t status;
}

source.u.gmfn stores the GMFN of the page that is to be copied if the SD is a local domain;
dest.u.gmfn stores the GMFN of the page of the DD to which a page of the SD is to be copied if
the DD is a local domain; source.u.ref stores the grant reference of the grant that grants access
to the page that is to be copied if the SD is a remote domain; dest.u.ref stores the grant reference
of the grant that grants access to the page of the DD to which a page from the SD is to be copied
in case the DD is a remote domain; (source./dest.)u.domid stores the identification number of
the SD/DD; len stores the number of bytes to be copied; flags stores a value indicating whether
the SD and the DD are local or remote domains.

Output:6 On success, GNTTABOP copy returns 0. On failure, GNTTABOP copy returns an
error code (typically a negative integer value). (struct gnttab copy)status stores a value indicating
the status of the page copying operation.

Workflow of the vulnerable hypercall handler:6

i ← the domain invoking GNTTABOP copy

11
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d ← the DD

do grant table op(GNTTABOP copy, struct grant table op op, ...)
call gnttab copy(op, ...)

call gnttab copy(op, ...)
. . .
if the DD is remote

call acquire grant for copy
. . .
act = active grant table entry (op.dest.ref)
. . .
if the grant to be acquired is non−transitive

. . .
act.trans domain = i
act.trans gref = 0

. . .
return

. . .
if the DD is remote

call release grant for copy(d, op.dest.ref, ...)
. . .
act = active grant table entry (op.dest.ref)
. . .
if the grant to be released is of version 2

if act.trans domain != d
call release grant for copy(act.trans domid, act.trans gref, ...)

return
. . .

return
return

return

Description of the vulnerability: In the handler of the hypercall operation GNT-
TABOP copy, the function acquire grant for copy is used for acquiring grants and re-
lease grant for copy(d, gref, ...) for releasing grants, where d is the domain that has issued the
grant to be released and gref is the reference of the grant to be released. In case a grant of version
2 is acquired, the hypervisor creates an active grant and sets the values of its fields trans domid
and trans gref to the identification number of the domain from where GNTTABOP copy has
been invoked and 0, respectively. The reason for the latter is to enable scenarios involving, as
described in the source code of the handler of GNTTABOP copy, “grant being issued by one
domain, sent to another one, and then transitively granted back to the original domain”.

The way in which the scenario mentioned above is supported causes non-transitive grants of
version 2 to be released as if they were transitive grants (i.e., in a recursive manner). The culprit
of this error is that when releasing a grant in the handler of GNTTABOP copy, it is assumed
that a transitive grant is a grant whose trans dom field stores a domain identification number
that is not equal to the identification number of the domain that has issued the grant being
released. However, since the value of the field trans domid of a non-transitive grant is set to
the identification number of the domain from where GNTTABOP copy has been invoked when
the grant has been acquired, the previously mentioned condition is also true for non-transitive
grants of version 2. As a result, when a non-transitive (active) grant of version 2 is released in
the handler of GNTTABOP copy, at least one more grant release takes place, where the grant
with a grant reference 0, issued by the domain from where GNTTABOP copy has been invoked,
is released.

An attacker can trigger CVE-2013-1964 by invoking GNTTABOP copy such that, for example,

12
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a page is copied from a local SD to a remote DD, which has issued a non-transitive grant of
version 2.

Vulnerability fix: A patch fixing the vulnerability CVE-2013-1964 was released on 18 April
2013 and is available at [17]. The patch modifies acquire grant for copy such that the value
of trans domid is set to the identification number of the domain that issued the grant that is
acquired. Further, the value of trans gref is set to the reference of the grant that is acquired.
These modifications of acquire grant for copy prevent the recursive release of non-transitive
grant of version 2.

Triggering CVE-2013-1964: We triggered CVE-2013-1964 in the following environment:

◦ guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure 2.5.

Hypervisor!

HYPERVISOR_grant_table_op!
(GNTTABOP_copy, …)!

Corrupted state!

DD!
(grant table of version 2)!

HYPERVISOR_grant_table_op!
(GNTTABOP_setup_table, …)!

0

0

SD!
(grant table of version 2)!

Figure 2.5: An attack triggering CVE-2013-1964

Post-attack state of the hypervisor: Triggering CVE-2013-1964 results in a release of the
grant with reference 0 issued by the domain from where GNTTABOP copy is invoked. Triggering
CVE-2013-1964 may disrupt the operation of the hypervisor if the grant released due to the
triggering of CVE-2013-1964 is in use (i.e., acquired) at the time of execution of the attack. When
we triggered CVE-2013-1964 in our testbed environment, the hypervisor continued operating in a
corrupted state.

2.3 Hypercall set debugreg

Vulnerability CVE-2012-3494

“The set debugreg hypercall in include/asm-x86/debugreg.h in Xen 4.0, 4.1, and 4.2,
and Citrix XenServer 6.0.2 and earlier, when running on x86-64 systems, allows local
OS guest users to cause a denial of service (host crash) by writing to the reserved
bits of the DR7 debug control register.” [1]

The set debugreg hypercall is used for setting the value of the DR7 register of a CPU allocated
to a guest VM. The DR7 register is used for controlling the actions of a CPU when program
debugging is performed (e.g., for setting data and/or instruction breakpoints). The addresses at
which breakpoints are set in a given debugging session are stored in the registers DR0 - DR3.

The layout of the DR7 register of a 64-bit machine is as follows: bit63 0 0 0 0 ....0 bit31

[LEN3][R/W3] ... [LEN0][R/W0]bit15 0 0 bit13 GDbit11 0 0 bit9 GE LE bit7 [G3][L3] ... [G0][L0].
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The upper 32 bits are reserved and should always be cleared. The LENx and R/Wx fields are
used for specifying the length of the monitored data items when a data breakpoint is set (e.g.,
00: one-byte length - also when an instruction breakpoint is set, 01: two-byte length) and the
type of program execution break set (e.g., 00 - instruction break, 01 - break on data write, 11 -
break on data read and write), respectively. The GE (global exact) and/or the LE (local exact)
bits are set when a data breakpoint is set and instruct the CPU to slow down the execution of
the program being debugged so that the exact instruction that triggers the data breakpoint can
be reported to the debugging program. The Gx and Lx bits are used for enabling or disabling
breakpoints set at the addresses stored in the registers DR0 - DR3.

Input:7 set debugreg takes as input a number of a register (an integer value, 7 is used for
specifying the DR7 register) and a value that is to be stored in the register (an unsigned long
integer value).

Output:7 On success, set debugreg returns 0. On failure, set debugreg returns an error code
(typically a negative integer value).

Workflow of the vulnerable hypercall handler:7

do set debugreg (int reg nr, unsigned long value)
call set debugreg(reg nr, value)

if reg nr = 7
value &= ˜DR CONTROL RESERVED ZERO
. . .
store value in DR7

return
return

Description of the vulnerability: In the handler of the set debugreg hypercall, the
value of the variable ˜DR CONTROL RESERVED ZERO is applied as a mask with the bi-
nary bitwise AND operator to the value of the second parameter of set debugreg. The latter
is performed so that the upper 32 bits of the value that is to be stored in the DR7 regis-
ter are cleared. DR CONTROL RESERVED ZERO, which stores the value of 0x0000d800ul,
translates to the binary value of bit63(0...0)bit31(0000) (0000) (0000) (0000) (1101) (1000)
(0000) (0000)bit0. The complement form of the previously mentioned binary number is:
bit63(1...1)bit31(1111) (1111) (1111) (1111) (0010) (0111) (1111) (1111)bit0, which is stored in
the variable ˜DR CONTROL RESERVED ZERO. Since they are set to 1, the upper 32 bits of
˜DR CONTROL RESERVED ZERO do not clear the upper 32 bits of the value that is to be
stored in the DR7 register when applied as a mask with the binary bitwise AND operator. This
results in setting one or multiple bits of the upper 32 bits of the DR7 register to 1, which is not
allowed according to hardware specifications.

CVE-2012-3494 can be triggered by invoking set debugreg in a way such that one or multiple
bits of the upper 32 bits of the value of the second parameter of set debugreg are set to 1. The bits
of the second parameter of set debugreg that are used for setting data or instruction breakpoints
(e.g., the bits of the LENx fields) should store binary values for setting an instruction breakpoint.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-3494 was re-
leased on 5 September 2012 and is available at [10]. The patch assigns the
value of ˜0xffff27fful to DR CONTROL RESERVED ZERO, and thus, the variable
˜DR CONTROL RESERVED ZERO, which is applied as a mask to the value of the second
parameter of set debugreg, has the binary value of bit63(0...0)bit31(0000) (0000) (0000) (0000)
(0010) (0111) (1111) (1111)bit0. Since the upper 32 bits of ˜DR CONTROL RESERVED ZERO
are cleared, applying ˜DR CONTROL RESERVED ZERO as a mask to the value of the second

7As in Xen of version 4.1.2.
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parameter of set debugreg with the binary bitwise AND operator clears the upper 32 bits of the
parameter.

Triggering CVE-2012-3494: We triggered CVE-2012-3494 in the following environment:

◦ guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure 2.6.

Guest VM! Hypervisor!

HYPERVISOR_set_debugreg(7,!
~0x0000FFFFul)!

Crash!

Figure 2.6: An attack triggering CVE-2012-3494

Post-attack state of the hypervisor: Given that in current systems the upper 32 bits of
the DR7 register are reserved and should be cleared, triggering CVE-2012-3494 results in crash
of the vulnerable hypervisor. However, an outcome different than crash of the hypervisor may be
possible if a vulnerable hypervisor is run on future hardware, as stated in [3]: “if the vulnerable
hypervisor is run on future hardware, the impact of the vulnerability might be widened depending
on the future assignment of the currently-reserved debug register bits.”

2.4 Hypercall physdev op

Vulnerability CVE-2012-3495

“The physdev get free pirq hypercall in arch/x86/physdev.c in Xen 4.1.x and Citrix
XenServer 6.0.2 and earlier uses the return value of the get free pirq function as an
array index without checking that the return value indicates an error, which allows
guest OS users to cause a denial of service (invalid memory write and host crash) and
possibly gain privileges via unspecified vectors.” [2]

PHYSDEVOP get free pirq is an operation of the physdev op hypercall, which is used for
allocating PIRQ (PCI IRQs - Peripheral Component Interconnect Interrupt ReQuests) for the
needs of a given guest VM. The Xen hypervisor maintains an array called pirq irq for each guest
VM that it hosts. pirq irq is used for marking a given PIRQ as allocated such that the value
of the constant variable PIRQ ALLOCATED (i.e., -1) is stored in the node of pirq irq of index
equal to the allocated PIRQ.

Input:8 PHYSDEVOP get free pirq takes as input structure of type physdev get free pirq
defined as:

struct physdev get free pirq {
int type;
uint32 t pirq;
}

8As in Xen of version 4.1.2.
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type stores the type of the PIRQ to be allocated (i.e., MAP PIRQ TYPE GSI or
MAP PIRQ TYPE MSI ).

Output:8 On success, PHYSDEVOP get free pirq returns 0 and the allocated PIRQ is stored
in (struct physdev get free pirq) pirq. On failure, -28 is stored in (struct physdev get free pirq)
pirq and XENMEM populate physmap returns an error code (typically a negative integer value).

Workflow of the vulnerable hypercall handler:8

do physdev op (PHYSDEVOP get free pirq, (struct physdev get free pirq) gfp)
. . .
call gfp.pirq = get free pirq(...)

allocate a PIRQ
return
pirq irq[gfp.pirq] = PIRQ ALLOCATED
. . .

return

Description of the vulnerability: In the handler of the PHYSDEVOP get free pirq
hypercall operation, the function get free pirq is invoked for allocating a PIRQ. The return value
of get free pirq is the allocated PIRQ, if a PIRQ has been succesfully allocated, or an error code
(i.e., -28) if a PIRQ could not be allocated. The return value of get free pirq is used as an index
to access an element of the array pirq irq for marking a PIRQ as allocated. However, the return
value of get free pirq is not checked whether it is a PIRQ or an error code. In case get free pirq
returns an error code, the error code is used as an array index and as a result the value of the
constant variable PIRQ ALLOCATED (i.e., -1) is written at the memory address &pirq irq - 28,
which is a location in hypervisor’s memory.

CVE-2012-3495 can be triggered by attempting to allocate a PIRQ when there are no available
PIRQs. This can be achieved by invoking the hypercall operation PHYSDEVOP get free pirq
multiple times until all available PIRQs are allocated and an attempt is made to allocate a PIRQ
when there are no available PIRQs. Since PIRQs that can be allocated to a given VM are in the
range of 16 to the value of the variable nr pirqs gsi, a variable in hypervisor context that stores
the largest PIRQ that can be allocated to a given VM, invoking PHYSDEVOP get free pirq
(nr pirqs gsi - 16) + 2) times is sufficient for triggering CVE-2012-3495.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-3495 was released on 5
September 2012 and is available at [11]. The patch inserts an if clause that checks whether the
return value of the get free pirq() function is a PIRQ. If get free pirq() returns an error code, the
error code is not used as an index for accessing an element of the pirq irq array.

Triggering CVE-2012-3495: We triggered CVE-2012-3495 in the following environment:

◦ guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure 2.7.

Post-attack state of the hypervisor: Triggering CVE-2012-3495 results in overwriting
the hypervisor’s memory at the memory address &pirq irq - 28 with the value of the variable
PIRQ ALLOCATED (i.e., -1). An attacker cannot control the value written in the hypervisor’s
memory. Depending on the memory layout of the hypervisor, the hypervisor may crash or
continue operating in a corrupted state. When we triggered CVE-2012-3495 in our testbed
environment, the hypervisor continued operating in a corrupted state.
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Guest VM! Hypervisor!

HYPERVISOR_physdev_op!
(PHYSDEVOP_get_free_pirq, …)!

Crash!

HYPERVISOR_physdev_op!
(PHYSDEVOP_get_free_pirq, …)!

0

x17!

Figure 2.7: An attack triggering CVE-2012-3495

2.5 Hypercall mmuext op

Vulnerability CVE-2012-5525

“The get page from gfn hypercall function in Xen 4.2 allows local PV guest OS
administrators to cause a denial of service (crash) via a crafted GFN that triggers a
buffer over-read.” [7]

The get page from gfn function provides information about a given memory page. It is invoked
in the handlers of multiple hypercalls of the Xen hypervisor, one of which is the handler of the
MMUEXT CLEAR PAGE operation of the mmuext op hypercall. MMUEXT CLEAR PAGE is
an operation of the mmuext op hypercall, which is used for clearing memory pages/frames.

Input:9 MMUEXT CLEAR PAGE takes as input structure of type mmuext op defined as:

struct mmuext op {
unsigned int cmd;
union {
xen pfn t mfn;
. . .
} arg1;
. . .
}

cmd stores a number identifying an operation of the mmuext op hypercall (e.g.,
MMUEXT CLEAR PAGE ); arg1.mfn stores the MFN of the page that is to be cleared.

Output:9 On success, MMUEXT CLEAR PAGE returns 0. On failure,
MMUEXT CLEAR PAGE returns an error code (typically a negative integer value).

Workflow of the vulnerable hypercall handler:9

do mmuext op ((struct mmuext op) op, ...)
struct page info page;
call page = get page from gfn(op.arg1.mfn, ...)
. . .

return

Description of the vulnerability: get page from gfn reads information about a page
allocated to a guest VM from the frame table of the VM using the MFN of the page as offset. A

9As in Xen of version 4.2.0.
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frame table is a memory area shared between the hypervisor and a guest VM where information
about each page allocated to the guest VM is stored in the format of a structure of type page info.

The MFN used by get page from gfn for reading page information is provided to
get page from gfn as an input parameter. The value of the MFN provided as input param-
eter to get page from gfn is not checked for validity. Since get page from gfn uses a MFN as an
offset for reading from the frame table of a given guest VM, an invalid MFN is a MFN that causes
a buffer over-read (i.e., that is larger than the largest MFN at which a page of the guest VM is
allocated). An attacker can provide an invalid MFN as an input parameter to get page from gfn,
in which case get page from gfn returns invalid page information.

In the handler of the MMUEXT CLEAR PAGE hypercall operation, the MFN stored in the
input parameter (struct mmuext op) arg1.mfn is provided to get page from gfn for reading page
information. CVE-2012-5525 can be triggered by invoking MMUEXT CLEAR PAGE such that
an invalid MFN is stored in (struct mmuext op) arg1.mfn.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-5525 was released on 3
December 2012 and is available at [16]. The patch inserts an invocation of the function mfn valid
in get page from gfn, which verifies the validity of the MFN provided as input to get page from gfn.
The patch modifies get page from gfn such that if the MFN used for reading page information is
not valid, get page from gfn returns NULL instead of invalid page information.

Triggering CVE-2012-5525: We triggered CVE-2012-5525 in the following environment:

◦ guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
◦ hypervisor - Xen 4.2.0.

Guest VM! Hypervisor!

HYPERVISOR_mmuext_op!
(&op, …)!

Crash!

op.cmd = 16; //MMUEXT_CLEAR_PAGE!
.arg1.mfn=0x0EEEEE;!

Figure 2.8: An attack triggering CVE-2012-5525

The attack that we executed is depicted in Figure 2.8.

Post-attack state of the hypervisor: Triggering CVE-2012-5525 may result in a crash of
the targeted hypervisor or may corrupt its state. Whether the hypervisor crashes depends on
the use of the invalid page information returned from get page from gfn when CVE-2012-5525 is
triggered. The hypervisor crashed when we triggered CVE-2012-5525 in our testbed environment.
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