
Metador Technical Appendix
An extensive technical analysis of the toolset used by a sophisticated threat actor as

described in our detailed report "The Mystery of Metador | An Unattributed Threat Hiding in

Telcos, ISPs, and Universities''

metaMain

A high-level overview of the operation of metaMain

z1

https://s1.ai/metador-report
https://s1.ai/metador-report


A high-level overview of the backdoor capability of metaMain

start_methods

We refer to metaMain as a multi-mode implant because it runs in either of two modes ,

‘meta’ or ‘main’. The implant is acutely aware of its own execution context and acts

accordingly. The full features of metaMain are described further below. First, we’ll detail the

different loading schemes supported by metaMain: (1) execution via CDB (in ‘main’ instead

of the ‘meta’ mode discussed in the main report), (2) HKCMD sideloading, and (3)

KL_INJECTED.

z2



1. CDB_DEBUGGER

In a metaMain, ‘Main’-mode CDB execution flow, metaMain will be loaded as a full-fledged

implant. The execution scheme for this flow does not include the Mafalda implant but is

very similar to the meta-mode execution previously described.

In this scheme, cdb.exe will be executed with the following command line:

c:\windows\system32\cdb.exe -cf c:\windows\system32\cdb.ini

c:\windows\system32\resmon.exe -chipset

In this flow, metaMain enters its main function and operates as a standalone implant

Notice that in this case, the operators replaced ‘defrag.exe’ with ‘resmon.exe’ as the

debugged process.

2. HKCMD Sideloading

metaMain supports an HKCMD sideloading start method, most likely involving hkcmd.exe

DLL search order hijacking, which was not observed in the wild. Nevertheless, analysis of

metaMain sheds some light on the files involved. Some of those files are listed in

metaMain’s built-in timestomping functionality, and include:

c:\windows\system32\hkcmd.exe

c:\windows\system32\hccutils.dll

c:\windows\system32\hkcmd.db

3. KL_INJECTED

metaMain supports a third, "virtual" start method. In this method, the metaMain instance

has been started by another metaMain instance that has injected the metaMain’s reflective

DLL Loader, Speech02.db, into a process. The metaMain instance that conducts process

z3



injection executes in the CDB_DEBUGGER start mode, with SYSTEM user privileges. The

newly injected instance, if running with regular user privileges, will perform keyboard and

mouse events logging as well as take screenshots).

To remind, a metaMain instance in the KL_INJECTED start method has been started by

another metaMain instance that has injected the metaMain’s reflective DLL Loader,

Speech02.db, into a process. The metaMain instance that conducts process injection

executes in the CDB_DEBUGGER start mode, with SYSTEM user privileges:

● The metaMain instance creates a thread internally referred to as k_inj_thread.

A metaMain instances creates the k_inj_thread thread (IDA Pro pseudocode, trimmed for

brevity)

● The k_inj_thread thread enumerates the processes that run on the platform where

metaMain executes to locate a target process for injection, with a name that equals

INJECT_KEYLOGGER_PROCESS – a configuration variable of metaMain.

z4



● After k_inj_thread has located a target process, the thread writes into the registry

value HKEY_LOCAL_MACHINE\SOFTWARE\DDE\tpid the process ID of the target

process and injects Speech02.db into the process.

To determine that it executes in the KL_INJECTED mode, metaMain evaluates whether the

ID of the process in whose context the implant runs is the same as the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\DDE\tpid.

A metaMain instance determines that it executes in the KL_INJECTED mode (IDA Pro

pseudocode, trimmed for brevity, tpid_value holds the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\DDE\tpid)

z5



Meta and Main Execution Modes

metaMain maintains an execution log that records events that pertain to the implant’s

operations, which represents a rich source of information for analysts. metaMain stores

this log in both an internal memory region and on the filesystem.

Entries from a metaMain execution log

metaMain creates a unique identification number for each infected system, which the

implant internally refers to as “network ID” or “CSRF” (possibly an acronym for ‘computer

system reference’). The network ID is a derivative of the infected platform’s computer name

and the user privileges with which metaMain executes –whether SYSTEM or regular user

privileges. metaMain uses the network ID as a reference for the infected system when

communicating with the C2 server and records it in the execution log.

Meta mode

In the meta execution mode, the implant acts as a loader of operator-provided shellcode

stored as a file on the victim’s system. metaMain internally refers to this file as the

‘metatsploit file’, which is probably where the name of the meta execution mode comes

from. Note the extra ‘t’ deviating from the popular metasploit pentesting tool.

z6



To execute in meta mode, the operator starts metaMain by specifying the -module <path>

command line parameter. If the <path> doesn’t point to a module file, metaMain attempts

to execute a default module from the metaMain working directory– `fcache03.db`. The

content of a metaMain module file is encrypted via XOR, where the XOR key is a derivative

of the size of the module file.

metaMain decrypts the content of a module file

metaMain first decrypts the content of the specified module file, then executes the

decrypted file content (i.e., the shellcode), and terminates its own execution.

Main mode

In the Main execution mode, metaMain acts as a backdoor and executes commands

based on operator input. In addition, if metaMain executes with regular user privileges,

metaMain logs keyboard and mouse events, and takes screenshots. To execute in the

Main execution mode, the operator starts metaMain by specifying the ‘-chipset’ command

line parameter.

In main mode, metaMain takes the following actions:

z7



● Acquires a mutex named `mutex_env_%USERNAME%`, where %USERNAME% is the

username in whose context metaMain executes.

● Reads, decrypts, and applies the configuration data in the RC4-encrypted

`fcache02.db` file from its working directory. The parameters from the configuration

file are detailed in the technical appendix. It primarily sets the parameters for

metaMain’s C2 communications.

● If metaMain executes with regular user privileges, it starts a thread to log keyboard

and mouse events, and to take screenshots. metaMain captures low level keyboard

and mouse events (WH_KEYBOARD_LL and WH_MOUSE_LL) using a message

queue. The implant stores the logged events in an internal memory region and on

the file system (in the fcache01.db file that resides in metaMain’s working directory).

Every 5 seconds, metaMain:

○ Flushes logged keyboard and mouse events from the internal memory

region to the fcache01.db file.

○ Takes a screenshot of the entire screen every SCREENSHOT_DELAY_SECS

seconds and stores it in the fcache04.db file. SCREENSHOT_DELAY_SECS is

a metaMain configuration variable. fcache04.db resides in metaMain’s

working directory.

● metaMain starts its backdoor capability, which includes executing commands

based on operator input and uploading the following data to the C2:

○ Screenshots stored in the fcache04.db file. metaMain deletes fcache04.db

after uploading its content.

○ The execution log of metaMain as well as recorded keyboard and mouse

events. These are stored in the fcache00.db and fcache01.db files that reside

in metaMain’s working directory.

Every 24 hours, metaMain flushes the fcache00.db and fcache01.db and then appends

them with data from the execution log and captured events stored in metaMain's memory

regions. The contents of the caches are then uploaded to the C2 and the local files deleted.

z8

https://docs.microsoft.com/en-us/windows/win32/winmsg/using-messages-and-message-queues
https://docs.microsoft.com/en-us/windows/win32/winmsg/using-messages-and-message-queues


The execution log and logged keyboard and mouse events are encrypted before being

written to fcache00.db and fcache01.db. metaMain uses XOR-based encryption such that

the XOR key for encrypting each character in the file is a derivative of the character’s file

position.

metaMain encrypts the content of fcache00/01.db

Working Directory and File System Artifacts

metaMain uses a working directory from which the implant reads files, or where it stores

files, during operation. When started, metaMain sets its working directory based on the

user privileges with which metaMain executes:

● %SystemRoot%\System32 if metaMain executes with SYSTEM user privileges

(System).

● %LOCALAPPDATA%\fontcache if metaMain executes with regular user privileges

(User).

z9



The files that reside in metaMain’s working directory follow the fcacheNN.db naming

convention, where N is a digit. Some of the files that reside in metaMain’s working directory

and that metaMain may interact with are:

● fcache00.db: This file stores the execution log of metaMain.

● fcache01.db: This file stores the keyboard and mouse events that metaMain has

logged.

● fcache02.db: This file stores metaMain configuration information.

● fcache03.db: This file stores shellcode (the implementation of a metaMain module)

that metaMain executes if the operator has not specified a file system path to a

module file when instructing metaMain to execute a module. metaMain has the

capability to execute operator-provided modules implemented in files that the

operator has placed on the victim’s filesystem.

● fcache04.db: This file stores screenshots that metaMain has taken.

In addition, if metaMain executes with SYSTEM user privileges, metaMain changes the

CreationTime, LastAccessTime, and LastWriteTime file time attributes of metaMain-related

files that may reside in the metaMain’s working directory (%SystemRoot%\System32) to the

values of these file attributes of the %SystemRoot%\System32\ansi.sys or

%SystemRoot%\System32\chkdsk.exe file. This is to reduce the chance of defenders

detecting the metaMain-related files in the %SystemRoot%\System32 directory based on

an anomaly in file time attributes. metaMain changes changes the CreationTime,

LastAccessTime, and LastWriteTime file time attributes of the following files: cdb.exe,

cdb.ini, hkcmd.exe, hccutils.dll, hkcmd.db, fcache02.db, fcache03.db, fcache07.db,

fcache08.db, Speech02.db, and Speech03.db.

C2 Server Interaction

When it operates inMainmode, metaMain downloads data from the C2 server in a

continuous loop, which, if available, instructs it to execute backdoor commands.

z10

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfiletime


metaMain supports three different ways of connecting to, and exchanging data with, the

C2 server, which we refer to as C2 communication methods:

● TCP KNOCK: metaMain establishes an indirect and raw TCP socket-based

connection to the C2 server. metaMain establishes a direct and raw TCP

socket-based connection to another implant, which metaMain internally refers to as

Cryshell. The role of Cryshell is to act as an intermediary between metaMain and the

C2 server, forwarding to the C2 server any data that originates from metaMain and

is designated for the C2 server. metaMain authenticates itself to Cryshell through a

port knocking and handshaking procedure. Same as metaMain, the Mafalda implant

can also communicate to the C2 server through Cryshell. We discuss the port

knocking procedure that the Mafalda uses to authenticate itself to Cryshell in

greater detail in the Additional Implants section. The port knocking procedure with

which metaMain authenticates itself to Cryshell is similar to the one that Mafalda

conducts.

● HTTP: metaMain establishes an HTTP (Hypertext Transfer Protocol)-based

connection to the C2 server. The IP address of the C2 server is stored in the

SERVER_ADDR configuration variable of metaMain. To send data to the C2 server,

metaMain issues the HTTP POST method to the weathertoday1 resource at the C2

server. To receive data from the C2 server, Mafalda issues the HTTP GET method to

request the same resource from the C2 server.

● NAMED PIPE: metaMain establishes a named pipe-based connection to the C2

server, where the named pipe is named \\.\pipe\DATABASE01. To send data to the

C2 server, metaMain executes the WriteFile function. To receive data from the C2

server, metaMain executes the ReadFile function.

The configured C2 communication method of metaMain is stored in the

COMMUNICATION_TYPE configuration variable of metaMain.

z11

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile


metaMain encrypts, or decrypts, the data that it sends to, or receives from, the C2 server

using the RC4 encryption algorithm.

Configuration File

When metaMain executes in ‘Main Mode’, it attempts to read a configuration file stored

under ‘fcache02.db’. In absence of that config file, the implant will terminate. The

configuration file dictates metaMain’s internal operations. The fields expected in the

configuration file are as follows:

Parameter Details

SERVER_ADDR HTTP C2 Server Address

PIPECLIENT_SERVER Pipe C2 Server Adress

PIPECLIENT_USERNAME Pipe C2 Server Username

PIPECLIENT_PASSWORD Pipe C2 Server Password

COMMUNICATION_TYPE C2 Communication scheme

SLEEP_INTERVAL_MINS Sleep interval in minutes

RETRY_DELAY_SECS Delay between C2 communication retries

SCREENSHOT_DELAY_SECS Delay between screenshots

KNOCK_HOP1_IP TCP knock relay IP

KNOCK_FINALIP TCP knock final destination

KNOCK_HOP1_KNOCKBASE TCP knock first port of sequence

KNOCK_HOP1_LISTENPORT TCP knock opened up port

z12



KNOCK_FINALPORT TCP known final port

INJECT_KEYLOGGER_PROCESS Process to Inject KL component to

metaMain Commands

CONFIG_UPDATE [configuration] Reconfigures metaMain based on operator-provided

configuration data ([configuration]). Stores the

configuration data in the fcache02.db file, in

metaMain’s working directory.

The [configuration] parameter is mandatory.

PS Enumerates the processes that run on the platform

where metaMain operates and uploads a list of the

enumerated processes to the C2 server.

META [path] Starts a new metaMain instance inMetamode such

that [path] is an operator-provided file system path to a

module file on the platform where metaMain operates.

The [path] parameter is optional.

CRASH Terminates the execution of metaMain ungracefully.

RESTART Restarts the execution of metaMain.

EXIT Terminates the execution of metaMain gracefully.

FLUSH Updates fcache00.db and fcache01.db by flushing and

appending to the files any execution log as well as

z13



captured keyboard and mouse events from the

metaMain’s memory regions where the implant stores

these. Enumerates the processes that run on the

platform where metaMain operates. Uploads the

content of fcache01.db and fcache00.db, and a list of

the enumerated processes to the C2 server. Deletes

fcache00.db and fcache01.db.

WINEXEC [command] Executes an operator-provided Windows command

([command]) by using the WinExec function.

The [command] parameter is mandatory.

DIR [path] [timestamp] Recursively enumerates the files in an

operator-provided directory, such that [path] is a file

system path to a directory on the platform where

metaMain operates. Uploads the enumeration results

to the C2 server.

The [path] parameter is mandatory.

If the operator has specified a timestamp in the

[timestamp] parameter (in year/month/date format),

enumerates only the files that have been modified

later than, or at, the timestamp.

The [timestamp] parameter is optional.

NETUSE [resource] [username]

[password]

Connects to an operator-provided network resource

([resource]) using an operator-provided username

z14

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-winexec


([username]) and password ([password]). Uses the

WNetAddConnection2W function to connect to the

resource.

The [resource], [username], and [password] parameters

are mandatory.

NETUSEDEL [resource] Disconnects from an operator-provided network

resource ([resource]). Uses the

WNetCancelConnection2W function to connect to the

resource.

The [resource] parameter is mandatory.

UP [path] Uploads to the C2 server a file such that [path] is the

operator-provided file system path to the file on the

platform where metaMain operates.

The [path] parameter is mandatory.

DOWN [resource] [path] Downloads an operator-provided resource ([resource])

from the C2 server and stores the resource at an

operator-provided file system path ([path]) on the

platform where metaMain operates.

The [resource] and [path] parameters are mandatory.

z15

https://docs.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetaddconnection2w
https://docs.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetcancelconnection2w


Mafalda

Mafalda Clear Build 144

As with metaMain, Mafalda keeps an execution log that records events that pertain to the

implant’s operation. Mafalda variants store the execution log in an internal memory region.

z16



Execution log showing an attempt to connect to a C2 at 5.2.77.52

Mafalda uses obfuscated strings for various purposes, such as to dynamically resolve

library function addresses or to store content in the execution log. The older variant

obfuscates strings by splitting the strings into multiple portions, with a maximum portion

length of 9 characters, and encoding each portion.

To restore an obfuscated string into a valid string, Mafalda first decodes each of the

string’s portions, and then concatenates the string portions together. A portion of an

obfuscated string is encoded using the bitmask 0x7F.

Mafalda string decoding loop

z17



When started, Mafalda creates a thread designated for keyboard and mouse event logging,

capturing low level keyboard and mouse events (WH_KEYBOARD_LL and WH_MOUSE_LL)

with a message queue.

Mafalda stores captured keyboard and mouse events in an internal memory region. In our

analysis environment, we typed the words “testbackdoor” and “keylogger” to test how the

keylogging function worked.

Keyboard and mouse events [M]) captured by Mafalda

Mafalda Command and Control

Data Management

Mafalda stores the data designated for the C2 server in a data structure, which we refer to

as a packet. The packets may contain any data that Mafalda may send to the C2 server,

such as:

z18

https://docs.microsoft.com/en-us/windows/win32/winmsg/about-hooks#wh_keyboard_ll
https://docs.microsoft.com/en-us/windows/win32/winmsg/about-hooks#wh_mouse_ll
https://docs.microsoft.com/en-us/windows/win32/winmsg/using-messages-and-message-queues


● The execution log.

● Captured keyboard and mouse events.

● Output of any backdoor commands that Mafalda has executed.

Mafalda manages outgoing packets as a queue, which we refer to as the outgoing packet

pipeline. Mafalda initializes the outgoing packet pipeline after creating the thread for

keyboard and mouse event logging.

Mafalda initializes the outgoing packet pipeline (IDA Pro pseudocode, trimmed for brevity,

packet_list_qword_180232290 labels the packet pipeline)

Mafalda iterates the outgoing packet pipeline and sends all packets in the pipeline to the C2

server:

● After establishing a connection to the C2 server – Mafalda sends logged keyboard

and mouse events, and the execution log, which the implant has previously stored in

the outgoing packet pipeline.

● After executing a backdoor command – Mafalda sends logged keyboard and

mouse events, the execution log, and the output of the command.

Outgoing packets may have names that are descriptive of the packets’ content. For

example, the packet with the name keylog\keylog_%time%.txt is the name of the packet

that stores the logged keyboard and mouse events (%time% is the local system time when

Mafalda sends the packet).

Mafalda also receives packets from the C2 server, which Mafalda processes as they arrive.

z19



C2 Server Interaction

Mafalda supports four different ways of connecting to, and exchanging data with, the C2

server, which we refer to as C2 communication methods:

● TCP RAW: Mafalda establishes a direct and raw TCP (Transmission Control

Protocol) socket-based connection to the IP address and the TCP port of the C2

server. The IP address and the TCP port are part of Mafalda’s configuration space.

Mafalda authenticates itself to the C2 server through a handshake procedure.

Mafalda encrypts, or decrypts, the data that it sends to, or receives from, the C2

server using the RC4 encryption algorithm.

● TCP KNOCK: Mafalda establishes an indirect and raw TCP socket-based connection

to the C2 server. Same as metaMain, Mafalda establishes a direct and raw TCP

socket-based connection to another implant, which Mafalda internally refers to as

Cryshell. The role of Cryshell is to act as an intermediary between Mafalda and the

C2 server, forwarding to the C2 server any data that originates from Mafalda and is

designated for the C2 server. Mafalda authenticates itself to Cryshell through a port

knocking and handshaking procedure. We discuss the port knocking procedure that

Mafalda uses to authenticate itself to Cryshell in greater detail in the Additional

Implants section. Mafalda encrypts, or decrypts, the data that it sends to, or

receives from, the C2 server using the RC4 encryption algorithm.

● HTTP: Mafalda establishes an HTTP (Hypertext Transfer Protocol)-based

connection to the C2 server. The IP address and the HTTP port of the C2 server are

part of Mafalda’s configuration space. Mafalda issues the HTTP GET method to

request the ticker resource from the C2 server. If the server responds with ok,

Mafalda considers the connection to the C2 server established. If the server

responds with nada, Mafalda considers the connection to the C2 server failed. To

send data to the C2 server, Mafalda encodes the data to Base64 format and issues

the HTTP POST method to the cdn resource at the C2 server. To receive data from

the C2 server, Mafalda issues the HTTP GET method to request the cnd resource

from the C2 server and decodes the received data from the Base64 format.

z20



● NAMED PIPE: Mafalda creates a named pipe to listen for incoming commands

from a named pipe-based C2 server. Mafalda attempts to create a named pipe up to

10 times if creation attempts fail, with named pipe names of \\.\pipe\DOMAIN%ID,

where %ID is an integer value between 0 and 9. To send data to the C2 server,

Mafalda executes the WriteFile function. To receive data from the C2 server,

Mafalda executes the ReadFile function.

When connecting to the C2 server using the TCP RAW, or the TCP KNOCK, communication

method, Mafalda authenticates itself to the C2 server, or Cryshell, through a handshake

procedure:

1. Mafalda generates a random 16 byte value, sends the value to the C2 server, or

Cryshell, and receives another 16 byte value back. Mafalda and the C2 server, or

Cryshell, use these values to initialize RC4 contexts for exchanging RC4-encrypted

data.

2. Mafalda sends RC4-encrypted data to the C2 server, or Cryshell, and receives

RC4-encrypted data back. If the data that Mafalda has sent is equal to the data that

Mafalda has received, the handshake procedure is considered complete.

If Mafalda fails to establish a connection to the C2 server, the implant sleeps for an amount

of time, initializes the outgoing packet pipeline, and attempts to reconnect. Mafalda

increases double the amount of time during which the implant sleeps between

reconnection attempts until it exceeds 3 hours. Mafalda then terminates if the name of the

process in whose context the implant runs is resmon.exe or defrag.exe.

In our investigations, we observed multiple instances of Mafalda that the Metador threat

actor has deployed in the victims’ environments, with different C2 communication

methods configured:

z21

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile


File name C2 Communication Method

fcache11.db TCP RAW

fcache13.db HTTP

fcache14.db NAMED PIPE
Mafalda instances

If Mafalda successfully establishes a connection to the C2 server, Mafalda builds and

sends a packet to the C2 server, which we refer to as the initial packet. Among other things,

the initial packet contains:

● Information about the platform and execution environment where Mafalda runs, for

example,

DESKTOP-FA41KBG\testuser.DESKTOP-FA41KBG.rundll32.exe.4508.UAC:Medium.OS:

Windows 10 build 17763.Ses:1.HTTP, where DESKTOP-FA41KBG is the name of the

computer where Mafalda runs, testuser is the user in whose context Mafalda runs,

and rundll32.exe and 4508 is the name and the ID of the process that hosts Mafalda.

● A JSON-formatted string that documents in detail the backdoor commands that

Mafalda supports and the commands’ parameters. Therefore, this string represents

a very rich information source to malware analysts.

The older Mafalda variant supports 54 backdoor commands. Each command that

Mafalda supports is associated with a command identification number and a

command name. In the Appendix, in the Mafalda Commands section, we list the

command names and descriptions that we extracted from Mafalda, that is, from

the JSON-formatted string.

The instructional nature of the backdoor command descriptions stored in the

JSON-formatted string and the presence of the word operator in these descriptions

is an indication that Mafalda is developed by an actor separate from the Mafalda

operator (the Metador threat actor).

z22



JSON-formatted string that documents backdoor commands (trimmed for brevity)

Packet Processing

After sending the initial packet, Mafalda continues to execute in a loop of sending outgoing

packets to, and receiving packets from, the C2 server.

Each packet that Mafalda receives is of a given type and subtype. The packet type and

subtype are uniquely identified by identification numbers, which the authors of Mafalda

refer to as outer OPC and inner OPC, respectively:

● The packet of type 0x71 has no impact on the operation of Mafalda.

z23



● The packet of type 0x72 instructs Mafalda to exit the loop of sending outgoing

packets to, and receiving packets from, the C2 server, and reconnect to the C2

server after a sleep period.

● The packet of type 0x73 instructs Mafalda that the packet has a subtype:

○ The packet of subtype 0x81 or 0x82 instructs Mafalda to execute the

backdoor command with the command identification number stored in the

packet.

○ The packet of any other subtype instructs Mafalda to exit the loop of sending

outgoing packets to, and receiving packets from, the C2 server, and

reconnect to the C2 server after a sleep period.

The functionalities of the backdoor commands that Mafalda implements have a very broad

scope and include data and information theft (such as downloading files and taking

screenshots), command execution, system registry and file system manipulation,

credential theft, and Mafalda reconfiguration.

For example, the change_c2 command changes the configuration of Mafalda that relates

to the C2 server – the Mafalda operator can change, for instance, the server’s IP address

and TCP port number, as well as the configured C2 communication method. In addition,

the connect_named_pipe command connects through a named pipe a Mafalda instance,

which operates using the TCP RAW C2 communication method, to another Mafalda

instance that operates using the NAMED PIPE C2 communication method. This turns the

former Mafalda instance into an entity that forwards communication with the C2 server for

the latter Mafalda instance. The disconnect_named_pipe command shuts down the named

pipe connection between the two Mafalda instances. We depict below the descriptions of

the change_c2, connect_named_pipe, and disconnect_named_pipe commands as displayed

byMafalda simulator.Mafalda simulator is a tool that we developed to pretty-print the

documentation on the backdoor commands that Mafalda supports and the commands’

parameters that we extracted from Mafalda.

z24



The change_c2 command (Mafalda simulator view)

The connect_named_pipe command (Mafalda simulator view)

Mafalda Obfuscated Build

The newer variant of Mafalda is an extension of the older variant, with two major

differences:

● The implementation and certain operational aspects of the newer Mafalda variant

are obfuscated to make analysis challenging.

● The newer Mafalda variant provides additional backdoor commands to implant

operators.

This section discusses the differences between the older and the newer Mafalda variant in

greater detail.

Obfuscations Overview

In this section, we provide an overview of the major obfuscation measures that the

developers of the newer Mafalda variant have implemented.

z25



Execution Flow Obfuscation

The newer Mafalda variant is obfuscated at implementation-level such that the compiled

code of the implant consists mainly of:

● Obfuscated code segments.

● Non-obfuscated code segments, the majority of which are functions that

implement Mafalda functionalities.

In most cases, the obfuscated code segments start with thunk functions – functions that

implement only a single JMP instruction that directs execution to a destination location.

The thunk functions direct the execution of Mafalda to obfuscated code segments. Such a

segment ultimately returns execution to a destination location in the memory mapped to

Mafalda that is in the relative vicinity of the thunk function that has directed execution to

the segment. This destination location is a non-obfuscated code segment — often the

prologue of a function that implements Mafalda functionalities. In summary, the

obfuscated code segments effectively obfuscate the invocation of non-obfuscated

functions, which makes static analysis a challenging process.

The figure below depicts an instance of execution flow obfuscation through thunk

functions that the newer Mafalda variant features. The thunk function entryRoutine directs

execution to the location entryRoutine_0. entryRoutine_0marks the beginning of an

obfuscated code segment. This code segment ultimately returns the execution to a

non-obfuscated code segment – the prologue of the function sub_17808D17767.

z26



Execution flow obfuscation through a thunk function (IDA Pro disassembly view, trimmed

for brevity)

Some of the obfuscation techniques that the developers of Mafalda have applied to the

obfuscated code segments include:

● Opaque predicates, for example, comparing the value in a register against itself,

which always evaluates to TRUE.

● Use of a single or multiple instructions that have no impact on Mafalda’s execution

or data, such as left or right rotation of a register value for 0 bytes, exchanging twice

the values in two registers, or first pushing and then immediately removing from the

stack a given value.

● Use of multiple, instead of one, JMP instructions (trampolines) to direct execution to

a destination location.

z27



● Conditional execution based on a flag value in the RFLAGS register, for example, the

zero flag (ZF) or the parity flag (PF), such that any of the possible flag values (0 or 1)

result in the execution of the code at a given location in the memory mapped to

Mafalda.

Obfuscated code segment (IDA Pro disassembly view, trimmed for brevity)

String and Function Parameter Obfuscation

Same as the older Mafalda variant, the newer Mafalda variant often uses obfuscated

strings for different purposes, for example, to dynamically resolve library function

addresses through library and library export names, or to store content in the execution log.

The newer Mafalda variant obfuscates strings by:

● Splitting the strings into multiple portions, with a maximum portion length of 9

characters.

z28



● Encrypting and encoding each string portion.

Therefore, to restore an obfuscated string into a valid string, Mafalda first decodes and

decrypts each of the string’s portions, and then concatenates the string portions together.

A portion of an obfuscated string is encoded using the bitmask 0x7F and XOR-encrypted

using a portion-specific XOR key of one byte. The figure below depicts a snippet of the

function that Mafalda executes to decoding and decrypt a portion of an obfuscated string.

Mafalda decodes and decrypts a string (newer Mafalda variant, IDA Pro pseudocode,

trimmed for brevity, a2 is a portion of an obfuscated string, v2 is the XOR key for the string

portion)

To further make analysis challenging, Mafalda often obfuscates numerical function

parameters by calculating parameter values prior to function execution using arithmetics

and bitwise operations.

Mafalda may also first compute a value using arithmetics and bitwise operations, and if the

computed value does or does not match a predefined value, Mafalda assigns the correct

values to the obfuscated parameters. The alternative branch assigns wrong values to the

obfuscated parameters and exists to confuse analysis tools. Mafalda applies this

obfuscation approach when it executes the function that the implant uses to decode and

z29



decrypt obfuscated string portions (labeled j_str_resolve_sub_18014FE4D in the figure

below).

Function parameter obfuscation (IDA Pro pseudocode, trimmed for brevity, v53 is a portion

of an obfuscated string)

String Encryption

In addition to the string obfuscation approaches that we discussed in the previous section,

the newer Mafalda variant works with encrypted versions of string resources that may

represent an information source to malware analysts. Such string resources include

segments of Mafalda’s execution log, debugger messages, and the JSON-formatted string

that documents the backdoor commands that Mafalda supports.

For example, in contrast to the execution log of the older Mafalda variant, the execution log

of the newer Mafalda variant is encrypted. Given that Mafalda’s execution log provides

extensive information about the operation of the implant, encrypting the execution log of

Mafalda is an effective way to obfuscate the information that the log provides to analysts.

z30



Encrypted execution log (trimmed for brevity)

Mafalda Clear Build 144 Commands

Command Name Command Description

revert_to_self Finishes all impersonations and become who you were when this
thread started

pwd print working directory

cd change working directory

ls list directory contents

download download file from target computer onto operator machine

upload upload file from operator to target machine

screenshot take screenshot of target machine and save to file

shell execute shell command with cmd.exe

exit_implant terminates implant by killing own process

ps list processes

kill kill process

z31



rm delete file

execute executes command (does not get output)

timestomp give old file time to file

get_privs use AdjustTokenPrivileges() to give your process additional
privileges

powershell execute a powershell command

inject_shellcode Inject shellcode into target process

spawn_shellcode Spawn a new process and inject shellcode into it

make_token Creates a token for a different user

get_system (Metasploit & Cobalt Strike) try to elevate to SYSTEM

list_tokens (Metasploit Incognito) Lists all tokens on machine

change_c2 Changes C2 server (this will NOT be saved anywhere but just
affect this implant in-memory)

impersonate_token (Metasploit Incognito) Impersonate a token owned by any
process we can access. E.g a fileserver might be a nice place to
find tokens :-)

connect_share we connect to a windows share

disconnect_share we disconnect from a windows share

uac_info Gives information about our UAC integrity level and status

uac_stealtoken (Cobalt Strike) Tries to get a UAC-elevated token (so you then can
spawn elevated processes)

reg_list Lists a Registry key with all subkeys and values

z32



reg_put_string Writes a string as REG_SZ to a registry Value

reg_put_dword Writes a value as REG_DWORD to a registry Value

hashdump Dumps password hashes from LSASS.exe.

mimi Run Mimikatz command

hidden_mimi_initialize loads mimi dll into memory

psexec Creates a remote service, lets it run once, then deletes it again

reg_del_key Deletes a Key, all subkeys and all values

hidden_set_syscall_nr sets syscall number (so we can use syscalls instead of
NtFunctions)

set set options

version shows build version and build date

portfwd_connect establishes ssh connection from implant to a server (usually
where tcpserver.py runs). This does NOT forward any ports yet!

portfwd_disconnect kills the ssh conenction that is used for port forwarding (this also
kills ALL port forwards!)

portfwd_add adds a port forward from SSH server into target network

portfwd_remove removes a port forward from SSH server into target network

portfwd_status Shows status of port forwarding

hidden_portfwd_initialize loads dll into memory

credential_logger Patches LSASS.EXE so Windows credentials will be logged to
c:\windows\system32\prefetch.dat (this cannot be stopped and
will go on until reboot)

z33



cat types ASCII text file

hidden_credential_logger_
setparams

Sets parameters for credential logger

portscan UNFINISHED!

clear_event_log Clears the windows event log

sleep disconnect and sleep, the reconnect, e.g. 'sleep 3 h' will sleep for 3
hours

run_dotnet Runs a dotnet library DLL in memory. Requirements: string as
input, string as output.

connect_named_pipe Connects to another Mafalda instance that is listening on a
named pipe. For now this works only if you are connected via
TCP. HINT: maybe connect_share first!

disconnect_named_pipe Disconnects named pipe forwarding (no matter if you are the
forwarder or the forwardee)

check_edr Displays information about Antivirus (which this week is called
Endpoint Detection and Response (EDR) Systems)

list_drives Lists all HDDs

Enumerated Software

Software Artifacts

Avira Avkmgr.sys, avipbb.sys, avusbflt.sys, avnetflt.sys,
avgntflt.sys, Avira.ServiceHost.exe, Avira.Systray.exe,
Avira.OptimizerHost.exe, Avira.VpnService.exe,
Avira.SoftwareUpdater.ServiceHost.exe,
Avira.Spotlight.Service.exe, avguard.exe, avshadow.exe,
protectedservice.exe

z34



FireEye FeKern.sys, WFP_MRT.sys

Raytheon Cyber Solutions eaw.sys

CJSC Returnil Software rvsavd.sys

Verdasys Inc. dgdmk.sys

Altiris (Symantec) atrsdfw.sys

Malwarebytes mwac.sys, MbamChameleon.sys, farflt.sys,
mbamwatchdog.sys, MBAMService.exe, mbamtray.exe,
mbam.exe

ESET edevmon.sys, ehdrv.sys

SentinelOne SentinelMonitor.sys

BitDefender edrsensor.sys, hbflt.sys, bdsvm.sys, gzflt.sys, bddevflt.sys,
AVCKF.SYS, Atc.sys, AVC3.SYS, TRUFOS.SYS,
BDSandBox.sys, bdredline.exe, vsserv.exe, vsservppl.exe,
updatesrv.exe, bdagent.exe

Hexis Cyber Solutions HexisFSMonitor.sys

Cylance Inc. CyOptics.sys, CyProtectDrv32.sys, CyProtectDrv64.sys

Avast aswSP.sys, avastsvc.exe, avastui.exe

McAfee mfeaskm.sys, mfencfilter.sys, epdrv.sys, mfencoas.sys,
mfehidk.sys, swin.sys, hdlpflt.sys, mfprom.sys,
MfeEEFF.sys

Dell Secureworks groundling32.sys, groundling64.sys

AVG Technologies avgtpx86.sys, avgtpx64.sys

Symantec Pgpwdefs.sys, GEProtection.sys, diflt.sys, sysMon.sys,
ssrfsf.sys, emxdrv2.sys, reghook.sys, spbbcdrv.sys,
bhdrvx86.sys, bhdrvx64.sys, SISIPSFileFilter.sys,
symevent.sys, vxfsrep.sys, VirtFile.sys, SymAFR.sys,
symefasi.sys, symefa.sys, symefa64.sys, SymHsm.sys,
evmf.sys, GEFCMP.sys, VFSEnc.sys, pgpfs.sys, fencry.sys,
symrg.sys, NortonSecurity.exe, nsWscSvc.exe,
nsWscSvc.exe, ccsvchst.exe, sysidsservice.exe,
sysipsservice.exe, sisipsutil.exe, SAFE-Cyberdefense,
SAFE-Agent.sys

z35



CyberArk Software CybKernelTracker.sys

Kaspersky klifks.sys, klifaa.sys, Klifsm.sys

Sophos SAVOnAccess.sys, savonaccess.sys, sld.sys

Webroot Software, Inc. ssfmonm.sys, WRCore.x64.sys, WRkrn.sys, WRSA.exe,
WRSkyClient.x64.exe, WRCoreService.x64.exe

Carbon Black CarbonBlackK.sys, carbonblackk.sys

Cybereason CRExecPrev.sys

CrowdStrike Im.sys, CSAgent.sys, CSBoot.sys, CSDeviceControl.sys,
cspcm2.sys,

Comodo Security Solutions cfrmd.sys, cmdccav.sys, cmdguard.sys, CmdMnEfs.sys,
MyDLPMF.sys

Panda Security PSINPROC.SYS, PSINFILE.SYS, amfsm.sys,
amm8660.sys, amm6460.sys

F-Secure fsgk.sys, fsatp.sys, fshs.sys, nif2s64.sys, fsulgk.sys,
fshoster32.exe, fsorsp64.exe, fshoster64.exe,
fsulprothoster.exe

Endgame esensor.sys

Cisco csacentr.sys, csaenh.sys, csareg.sys, csascr.sys,
csaav.sys, csaam.sys

Trend Micro Inc TMUMS.sys, hfileflt.sys, TMUMH.sys, AcDriver.sys,
SakFile.sys, SakMFile.sys, fileflt.sys, TmEsFlt.sys,
tmevtmgr.sys, TmFileEncDmk.sys,
coreFrameworkHost.exe, uiWatchDog.exe, uiWinMgr.exe,
Tmsalntance64.exe, AMSPTelemetryService.exe

Enigmasoft Spyhunter shmonitor.exe

Check Point Software
Technologies

epregflt.sys, medlpflt.sys, dsfa.sys, cposfw.sys

Absolute psepfilter.sys, cve.sys

Bromium brfilter.sys, BrCow_x_x_x_x.sys

LogRhythm LRAgentMF.sys

z36



OPSWAT Inc libwamf.sys

Sysinternals PROCMON24.SYS, Autoruns.exe, Autoruns64.exe,
Dbgview.exe, procexp.exe, procexp64.exe, Procmon.exe,
tcpview.exe, sysmon.exe

Wireshark wireshark.exe

x64dbg x64dbg.exe, x32dbg.exe

Olly Debugger ollydbg.exe

IDA Pro (WTF?) ida.exe, ida64.exe

Binary Ninja (WTF?) binaryninja.exe

Microsoft WinDbg windbg.exe

VMWare vmtoolsd.exe, vmhgfs.sys, vmmemctl.sys, vmrawdsk.sys,
vmusbmouse.sys, vm3dmp.sys, vmmouse.sys

Fellow Hackers msbuild.exe

z37


