
Windows Defender Application Control: Initialization

Dominik Phillips)

dphillips@ernw.de
Aleksandar Milenkoski

amilenkoski@ernw.de

This work is part of theWindows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author ()).

The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung,
Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik - BSI).

Required Reading
In addition to referenced work, related work focussing on Device Guard Image Integrity, part of the Windows
Insight series, are relevant for understanding concepts and terms mentioned in this document.

Technology Domain
The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

1 Introduction
This section describes the process for initializing Windows Defender Application Control (WDAC) performed by
the Windows loader and the kernel when Windows 10 is booted (see Figure 1).

Figure 1: WDAC initialization



Windows loader The OslPrepareTarget function implemented as part of the Windows loader performs WDAC
initialization activities. These activites are performed by the functions: OslpProcessSIPolicy, OslpLoadAllModules,
and OslBuildCodeIntegrityLoaderBlock. These functions are invoked by OslPrepareTarget.

The OslpProcessSIPolicy function initializes and loads theWDAC policy in the context of theWindows loader. This
involves verifying the integrity of the WDAC policy, if signed. Once OslpProcessSIPolicy is finished executing, the
WDAC policy may be used for image verification by the Windows loader. Among other images, the Windows
loader verifies the integrity of the ci.dll file.

The functions OslBuildCodeIntegrityLoaderBlock and OslpLoadAllModules populate with WDAC initialization pa-
rameters the CodeIntegrityLoaderBlock (see Figure 17) and LoadOrderListHead fields ultimately referenced by
the _LOADER_PARAMETER_BLOCK structure ([RSI12], Chapter 13). The _LOADER_PARAMETER_BLOCK struc-
ture is ultimately passed to the Windows kernel at execution transfer between the Windows loader and the
kernel. Once _LOADER_PARAMETER_BLOCK is populated with WDAC initialization parameters, the Windows
loader transfers the execution control to the Windows kernel. To this end, it executes the OslArchTransferToK-
ernel function.

Windows kernel Once the Windows loader has transferred the execution control to the kernel, it uses the pop-
ulated _LOADER_PARAMETER_BLOCK structure to initialize WDAC in the context of the kernel. The kernel is
initialized in two phases: Phase 0 and Phase 1 ([RSI12], Chapter 13). The kernel invokes in Phase 0 theMiReload-
BootLoadedDrivers function. This function allocates a memory region in the virtual address space assigned to
the kernel for the ci.dll file. The starting address of this space is referred to as the image base address of ci.dll.

Once Phase 0 is finished, the kernel starts Phase 1. In this phase, the kernel continues initializing WDAC.
This involves for example, invoking the SeCodeIntegrityInitializePolicy function, which initializes theWDAC policy.
Once SeCodeIntegrityInitializePolicy is finished executing, the WDAC policy may be used for image verification by
the Windows kernel.

2 Windows Loader: OslpProcessSIPolicy
OslpProcessSIPolicy loads and processes the SIPolicy.p7b file, that is, the WDAC policy. If the WDAC policy is
signed, OslpProcessSIPolicy verifies the integrity of the policy. This section discusses this verification process.
The SIPolicy.p7b is in the (Public Key Cryptography Standards) PKCS#7 file format.1 This format allows for
specifying file-specific cryptographic data, such as digital signatures. Figure 2 depicts the Abstract Syntax
NotationOne (ASN.1) format of a digitally signedPKCS#7 file. The SignedData data structure contains the overall
data content, including related cryptographic data. This section focusses on the digestAlgorithms, contentInfo,
certificates, and signerInfos fields of SignedData.

Figure 2: ASN.1 format of a PKCS#7 file

contentInfo stores the user-generated file rules and policy rule options in binary format. This work refers to
these file rules and policy rule options as WDAC content. OslpProcessSIPolicy verifies the integrity of the WDAC
content.

1https://tools.ietf.org/html/rfc2315 [Retrieved: 13/9/2018]

https://tools.ietf.org/html/rfc2315


certificates stores the certificate chain used to sign WDAC content. The certificates are stored in the X.509
format.

signerInfos stores values that describe the certificate of the signer of the WDAC content, the hash value of the
WDAC content, and the signed hash of the WDAC content. Some fields referenced by signerInfos are:

• issuerAndSerialNumber, which stores the issuer and the serial number of the signing certificate;

• encryptedDigest, which stores the signed hash of the WDAC content;

• digestAlgorithm, which stores the hash algorithm used to calculate the hash value of the WDAC content;
and

• authenticatedAttributes, which stores, among other things, the hash value of the WDAC content.

Figure 3 depicts a portion of a signed WDAC policy as viewed with the openssl utility.

Figure 3: Portion of a signed WDAC policy

OslpProcessSIPolicy first invokes the BlSIPolicyCheckPolicyOnDevice function, which invokes BlSIPolicyReadPoli-
cies. BlSIPolicyReadPolicies loads SIPolicy.p7b and returns the size and ASN.1 formatted WDAC policy. The
former is stored at offset 0x30, and the latter at 0x28 of the rsp register (see Figure 4).

WDAC is considered disabled if no WDAC policy is returned by BlSIPolicyReadPolicies. If a WDAC policy is re-
turned, WDAC is considered enabled. Only users with administrative privileges can delete a WDAC policy and
therefore, disable WDAC. When BlSIPolicyReadPolicies is finished executing, BlSIPolicyCheckPolicyOnDevice in-
vokes BlSIPolicyParsePolicyData. This function processes the loaded WDAC policy.

Before BlSIPolicyParsePolicyData processes the WDAC policy, it verifies its integrity. The MinCryptVerifySigned-
DataLMode function initiates the verification of the WDAC policy. MinCryptVerifySignedDataLMode receives as
parameters the size of the WDAC policy and the ASN.1 formatted WDAC policy. Figure 5 depicts the invoca-
tion of MinCryptVerifySignedDataLMode. The integrity verification of the WDAC policy can be structured into two
phases. In the first phase, the certificate of the signer of the WDAC policy is verified. In the second phase, the
integrity of the WDAC policy itself is verified.

MinCryptVerifySignedDataLMode first invokes the MinCryptVerifyCertificateWithRootInfo function. MinCryptVeri-
fyCertificateWithRootInfo verifies the certificate of the signer of theWDAC policy signer certificate against its root
certificate. The verified certificate is stored in the certificates field of the SignedData structure. MinCryptVeri-
fyCertificateWithRootInfo uses the root certificates embedded in the Windows loader, in the RootTable structure.
The fact that certificates embedded in the Windows loader are used for verifying the certificate used to sign the
WDAC policy shows that the root of trust for verifying the integrity of the WDAC policy is the Windows loader
itself.



Figure 4: Loaded SIPolicy.p7b

Figure 5: Invocation of MinCryptVerifySignedDataLMode

It is important to emphasize that in the scenario, where the WDAC policy is signed with a certificate that cannot
be verified against a root certificate stored in RootTable, the certificate is considered valid without verification
against an alternative root certificate.

Once MinCryptVerifyCertificateWithRootInfo is finished executing, the WDAC policy, that is, the WDAC content,
is verified. To this end, MinCryptVerifySignedDataLMode first invokes the MinCryptHashMemory function. Min-
CryptHashMemory computes the hash value of the WDAC content, which stored in the contentInfo field of the
SignedData structure. The algorithm used to calculate the hash value of the WDAC content is stored in digestAl-
gorithms.

MinCryptVerifySignedDataLMode then invokes the I_MinCryptVerifySignerAuthenticatedAttributes function. This
function verifies the computed hash value against the hash value stored in authenticatedAttributes. Finally,Min-
CryptVerifySignedDataLMode invokes MinCryptVerifySignedHash in order to verify the signed hash of the WDAC
content stored in encryptedDigest. To this end, it uses the previously verified signer certificate and the verified
computed hash value. Only if the verifications performed by I_MinCryptVerifySignerAuthenticatedAttributes and
MinCryptVerifySignedHash are successful, the WDAC content is considered authentic.



3 Windows Loader: OslpLoadAllModules
OslpLoadAllModules performs image loading and integrity verification activities. OslpLoadAllModules invokes
OslLoadDrivers for loading driver executables, and OslLoadImage for loading any other type of image. The
Windows loader loads the ci.dll library file in the LoadImports function, invoked by OslLoadImage. All of the
previously mentioned functions ultimately invoke BlImgLoadPEImageEx, which performs image loading and in-
tegrity verification. Figure 6 depicts the BlImgLoadPEImageEx function loading ci.dll and its image base address
(fffff803‘99b1e000).

Figure 6: The image base address of ci.dll

Once ci.dll is loaded, its image base address is stored in a linked list referenced by the LoadOrderListHead vari-
able. This variable is stored in the _LOADER_PARAMETER_BLOCK structure. Figure 7 depicts a portion of _-
LOADER_PARAMETER_BLOCK and the LoadOrderListHead variable referencing the image base address of ci.dll.

Figure 7: A portion of _LOADER_PARAMETER_BLOCK and LoadOrderListHead

Once the Windows loader has transferred execution control to the kernel, it uses the populated LoadOrderList-
Head variable to pass the image base address of ci.dll (fffff803‘99b1e000) to the Windows kernel for allocation of
ci.dll in kernel’s context.

4 Windows Loader: OslBuildCodeIntegrityLoaderBlock
OslBuildCodeIntegrityLoaderBlock first populates the _LOADER_PARAMETER_CI_EXTENSION structurewithWDAC
initialization parameters. These parameters are used by the kernel to further initialize WDAC. A reference to



_LOADER_PARAMETER_CI_EXTENSION and its size are stored in the _LOADER_PARAMETER_EXTENSION struc-
ture, in the CodeIntegrityLoaderBlockSize and the CodeIntegrityLoaderBlock, respectively (see Figure 8). The
_LOADER_PARAMETER_EXTENSION structure is referenced by the Extension variable. This variable is stored in
_LOADER_PARAMETER_BLOCK, at offset 0xF0 (see Figure 8).

Figure 8: Relevant _LOADER_PARAMETER_* structures

The OslBuildCodeIntegrityLoaderBlock function populates _LOADER_PARAMETER_CI_EXTENSIONwithWDAC ini-
tialization parameters, such as:

• CodeIntegrityPolicyHash: This parameter stores the hash value of the WDAC content. This hash is calcu-
lated in the OslpCalculateCodeIntegrityPolicyHash function, invoked by OslBuildCodeIntegrityLoaderBlock;

• CodeIntegrityPolicySize: This parameter stores the size of the WDAC content; and

• CodeIntegrityPolicy: This parameter stores the WDAC content extracted from contentInfo.

After OslBuildCodeIntegrityLoaderBlock has finished executing, theWindows loader transfers the execution con-
trol to the kernel. The kernel uses the populated _LOADER_PARAMETER_CI_EXTENSION structure, ultimately
referenced by _LOADER_PARAMETER_BLOCK to further initialize WDAC.

5 Windows Kernel: MiReloadBootLoadedDrivers
After execution control has been transferred to the kernel, it invokes the InitBootProcessor function. This func-
tion is responsible for conducting relevant tasks, for example, initializing memory management functionalities.
InitBootProcessor ultimately invokes the memory management routine MmInitSystem. This routine, in turn, in-
vokes MiReloadBootLoadedDrivers. This function allocates ci.dll in the context of the kernel based on the image
base address of ci.dll (see, for example, fffff803‘99b1e000 in Figure 6), passed by the Windows loader.

MiReloadBootLoadedDrivers invokes theMiUpdateThunks function, which allocates ci.dll in the context of the ker-
nel. Figure 9 depicts the invocation of MiUpdateThunks. The second parameter of MiUpdateThunks (rdx in Fig-
ure 9) is the image base address of ci.dll passed by theWindows loader, whereas the third (r8 and fffff808‘c5fd0000
in Figure 9) is an address in the context of the kernel, where ci.dll is to be allocated.

Once ci.dll is allocated in the kernel’s context, the kernel invokes the SepInitializeCodeIntegrity function. This
function initializes the interface exposed by ci.dll, after which the kernel can use code integrity functionalities.

It is important to emphasize that the integrity of ci.dll is verified by the Windows loader. This shows that the root
of trust for verifying the integrity of ci.dll is the Windows loader.



Figure 9: Relocated ci.dll file

6 Windows Kernel: SeCodeIntegrityInitializePolicy
After ci.dll has been allocated in the kernel’s context and the interface exposed by it is available to the kernel,
the kernel initializes the WDAC policy. The SeCodeIntegrityInitializePolicy function initializes the WDAC policy.
This involves storage of the WDAC policy in the context of the kernel.

SeCodeIntegrityInitializePolicy receives as parameter the _LOADER_PARAMETER_BLOCK structure, populated
and passed by theWindows loader (KeLoaderBlock in Figure 10). This structure ultimately references_LOADER_-
PARAMETER_CI_EXTENSION (CodeIntegrityLoaderBlock in Figure 10), which, among other things, stores CodeIn-
tegrityPolicy and CodeIntegrityPolicyHash. CodeIntegrityPolicy stores the WDAC content itself.

Figure 10: Pseudo-code of the implementation of SeCodeIntegrityInitializePolicy

SeCodeIntegrityInitializePolicy invokes the CiInitializePolicy function. This function receives the _LOADER_PA-
RAMETER_CI_EXTENSION structure as parameter. CiInitializePolicy populates the ci.dll variables g_SiPolicyHan-
dles and g_SiPolicyHash with the values stored in the CodeIntegrityPolicy and CodeIntegrityPolicyHash variables,
respectively. An analysis of the WDAC initialization functionalities showed that the hash value stored in CodeIn-
tegrityPolicyHash is not used for verifying the integrity of the WDAC content stored in CodeIntegrityPolicy.

Figure 11 depicts a portion of a populated g_SiPolicyHandles variable. Once g_SiPolicyHandles is populated, the
Windows kernel can use theWDACcontent stored in g_SiPolicyHandles for verification purposes. The description
of each of the fields of g_SiPolicyHandles is out of the scope of this work.



It is important to emphasize that the integrity of theWDAC content is verified by theWindows loader. This shows
that the root of trust for verifying the integrity of the WDAC content is the Windows loader.

Figure 11: g_SiPolicyHandles



References
[RSI12] Mark E. Russinovich, David A. Solomon, and Alex Ionescu. Windows Internals, Part 2. 2012. Microsoft

Press.


	Introduction
	Windows Loader: OslpProcessSIPolicy
	Windows Loader: OslpLoadAllModules
	Windows Loader: OslBuildCodeIntegrityLoaderBlock
	Windows Kernel: MiReloadBootLoadedDrivers
	Windows Kernel: SeCodeIntegrityInitializePolicy

		2019-10-25T11:52:39+0100
	amilenkoski.client.ernw.net




