—(®) ERNW
d providing security.

Windows Defender Application Control: Initialization

Dominik Phillips™ Aleksandar Milenkoski
dphillipsfdernw.de amilenkoskildernw.de

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author (=),

The content of this work has been created in the course of the project named "Studie zu Systemaufbau, Protokollierung,
Hartung und Sicherheitsfunktionen in Windows 10 (SiSyPHuUS Win10)’ (ger.) - 'Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security [ger., Bundesamt fiir Sicherheit in der Informationstechnik - BSI).

Required Reading

In addition to referenced work, related work focussing on Device Guard Image Integrity, part of the Windows
Insight series, are relevant for understanding concepts and terms mentioned in this document.

Technology Domain

The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

1 Introduction

This section describes the process for initializing Windows Defender Application Control (WDAC) performed by
the Windows loader and the kernel when Windows 10 is booted (see Figure [l).

Legend:

EE— transfers execution control fo

|_> invocation sequence of relevant functions
Windows loader Windows kernel
Lb OslpProcessSIPolicy Lb MiReloadBootLoadedDrivers
-
Lp OslpLoadAlModules Ly seCodelntegrityInitializePalicy

Lh OslBuildCodelntegrityl oaderBlock

Figure 1: WDAC initialization

amilenkoski.client.ernw.net
2019-10-25 11:52:39

Windows loader The OslPrepareTarget function implemented as part of the Windows loader performs WDAC
initialization activities. These activites are performed by the functions: OslpProcessSIPolicy, OslpLoadAllModules,
and OslBuildCodelntegritylLoaderBlock. These functions are invoked by OslPrepareTarget.

The OslpProcessSIPolicy function initializes and loads the WDAC policy in the context of the Windows loader. This
involves verifying the integrity of the WDAC policy, if signed. Once OslpProcessS/Policy is finished executing, the
WDAC policy may be used for image verification by the Windows loader. Among other images, the Windows
loader verifies the integrity of the ci.dll file.

The functions OslBuildCodelntegrityl oaderBlock and OslpLoadAllModules populate with WDAC initialization pa-
rameters the CodelntegrityLoaderBlock (see Figure 17) and LoadOrderListHead fields ultimately referenced by
the _LOADER_PARAMETER_BLOCK structure ([RSI12], Chapter 13). The _LOADER_PARAMETER_BLOCK struc-
ture is ultimately passed to the Windows kernel at execution transfer between the Windows loader and the
kernel. Once _LOADER_PARAMETER_BLOCK is populated with WDAC initialization parameters, the Windows
loader transfers the execution control to the Windows kernel. To this end, it executes the OslArchTransferToK-
ernel function.

Windows kernel Once the Windows loader has transferred the execution control to the kernel, it uses the pop-
ulated LOADER PARAMETER BLOCK structure to initialize WDAC in the context of the kernel. The kernel is
initialized in two phases: Phase 0 and Phase 1 ([RSI12], Chapter 13). The kernelinvokes in Phase 0 the MiReload-
BootLoadedDrivers function. This function allocates a memory region in the virtual address space assigned to
the kernel for the ci.dll file. The starting address of this space is referred to as the image base address of ci.dlL

Once Phase 0 is finished, the kernel starts Phase 1. In this phase, the kernel continues initializing WDAC.
This involves for example, invoking the SeCodelntegritylnitializePolicy function, which initializes the WDAC policy.
Once SeCodelntegritylnitializePolicy is finished executing, the WDAC policy may be used for image verification by
the Windows kernel.

2 Windows Loader: OslpProcessSIPolicy

OslpProcessSIPolicy loads and processes the S/Policy.p7b file, that is, the WDAC policy. If the WDAC policy is
signed, OslpProcessSIPolicy verifies the integrity of the policy. This section discusses this verification process.
The SlPolicy.p7b is in the (Public Key Cryptography Standards) PKCS#7 file formatll This format allows for
specifying file-specific cryptographic data, such as digital signatures. Figure E depicts the Abstract Syntax
Notation One (ASN.1) format of a digitally signed PKCS#7 file. The SignedData data structure contains the overall
data content, including related cryptographic data. This section focusses on the digestAlgorithms, contentinfo,
certificates, and signerinfos fields of SignedData.

SignedData ::= SEQUENCE {

version: Version,
digestAlgorithms: DigestAlgorithmIdentifiers,
contentInfo: ContentInfo,
certificates:

[6] ExtendedCertificatesAndCertificates,
crls:

[1] CertificateRevocationLists,
signerInfos: SignerInfos

Figure 2: ASN.1 format of a PKCS#7 file

contentInfo stores the user-generated file rules and policy rule options in binary format. This work refers to
these file rules and policy rule options as WDAC content. OslpProcessSIPolicy verifies the integrity of the WDAC
content.

Thttps://tools.ietf.org/html/rfc2315 [Retrieved: 13/9/2018]

https://tools.ietf.org/html/rfc2315

certificates stores the certificate chain used to sign WDAC content. The certificates are stored in the X.509
format.

signerinfos stores values that describe the certificate of the signer of the WDAC content, the hash value of the
WDAC content, and the signed hash of the WDAC content. Some fields referenced by signerinfos are:

e jssuerAndSerialNumber, which stores the issuer and the serial number of the signing certificate;
¢ encryptedDigest, which stores the signed hash of the WDAC content;

e digestAlgorithm, which stores the hash algorithm used to calculate the hash value of the WDAC content;
and

e authenticatedAttributes, which stores, among other things, the hash value of the WDAC content.

Figure E depicts a portion of a signed WDAC policy as viewed with the openssl utility.

PKCST:
[---]

contents:

type: undefined (1.3.6.1.4.1.311.79.1)

d.other: OCTET STRING:
0000 - 02 00 00 00 @e 37 44 a2-c9 44 06 4c bS 51 f6 ceeeadDL DL
000f - 01 6e 56 30 76 e4 7 @7-2e 4c 19 20 4d b7 9 .nVev....L. M..
00le - 6f 44 a6 c5 a2 34 00 @0-cl 82 00 00 0O 08 00 oD diiaiaans
[]
012c - 00 06 00 00 0O 0O B0 00-00 GO 60 00 00 00 00
913b - 00 00 0@ 00 06 00 B0 60-00 B0 60 00 60 B0 00
014a - 00 0O 00 00 0O GO O3 PE-0@ GO L.........

cert:
cert_info:
version: 2
serialNumber: 0x1700000002AE2B61EAERGTI6EADODRE0B00002
signature:
algorithm: sha256WithRSAEncryption (1.2.846.113549.1.1.11)
parameter: NULL
issuer: DC=internal, DC=test, CN=test-WIN-97VOE5SA408L-CA
validity:
notBefore: Aug 3 14:06:27 2018 GMT
notAfter: Aug 3 14:86:27 2019 GMT
subject: CN=testDGSigningCert
[Eicase]

Figure 3: Portion of a signed WDAC policy

OslpProcessSIPolicy first invokes the B(S/PolicyCheckPolicyOnDevice function, which invokes BIS/PolicyReadPoli-
cies. BISIPolicyReadPolicies loads SIPolicy.p7b and returns the size and ASN.1 formatted WDAC policy. The
former is stored at offset 0x30, and the latter at 0x28 of the rsp register (see Figure @].

WDAC is considered disabled if no WDAC policy is returned by B(S/PolicyReadPolicies. I1f a WDAC policy is re-
turned, WDAC is considered enabled. Only users with administrative privileges can delete a WDAC policy and
therefore, disable WDAC. When BISIPolicyReadPolicies is finished executing, BISIPolicyCheckPolicyOnDevice in-
vokes BISIPolicyParsePolicyData. This function processes the loaded WDAC policy.

Before BlSIPolicyParsePolicyData processes the WDAC policy, it verifies its integrity. The MinCryptVerifySigned-
Datal Mode function initiates the verification of the WDAC policy. MinCryptVerifySignedDatal Mode receives as
parameters the size of the WDAC policy and the ASN.1 formatted WDAC policy. Figure E depicts the invoca-
tion of MinCryptVerifySignedDatal Mode. The integrity verification of the WDAC policy can be structured into two
phases. In the first phase, the certificate of the signer of the WDAC policy is verified. In the second phase, the
integrity of the WDAC policy itself is verified.

MinCryptVerifySignedDatal. Mode first invokes the MinCryptVerifyCertificateWithRootInfo function. MinCryptVeri-
fyCertificateWithRootInfo verifies the certificate of the signer of the WDAC policy signer certificate against its root
certificate. The verified certificate is stored in the certificates field of the SignedData structure. MinCryptVeri-
fyCertificateWithRootInfo uses the root certificates embedded in the Windows loader, in the RootTable structure.
The fact that certificates embedded in the Windows loader are used for verifying the certificate used to sign the
WDAC policy shows that the root of trust for verifying the integrity of the WDAC policy is the Windows loader
itself.

kd> dd poi(@rsp + 6x38) L1
00000000 001a6dc8 00000903

) Loo3)|

|kd> db_poi(poi(@rsp + 0x2

fffffB02° 26b7fee@ 30 82 @8 ff 06 09 2a 86-48 86 f7 Od 01 67 02 a®@ O.....*.H.......
fffff802° 26b7fef0 82 08 O 30 82 08 ec 02-01 01 31 Of 30 od 06 09 ...0......1.0...
fffffee2' 26b7ffee 66 86 48 01 65 03 04 02-01 05 00 30 82 01 67 06 '.H.e......0..g.
ffff802' 26b7Tf16 09 2b 06 61 04 01 82 37-4f 01 a0 82 01 58 04 82 .+.....70....X..

[...1

fffffBe2° 26bB0O76 0O OO 03 €0 00 00 a@ 82-05 84 30 82 05 8O 30 82
fffffae2 26b800BO 064 68 ab 03 02 01 62 P2-13 17 00 00 0O 02 ae 2b
fffff862° 260860960 61 ea €@ 67 96 ea 60 00-60 00 00 62 30 Ad 06 69
fffff802°26b80BAE 2a 86 48 86 f7 0d 01 01-6b 85 0O 30 52 31 18 30
fffffee2 26bBBObE 16 O6 Ga @9 92 26 89 93-12 2c 64 01 19 16 08 69 .
fffff8e2'26b80OCO 6e 74 65 72 6e 61 6c 31-14 30 12 06 Ba 09 92 26 nternall.6.....&
fffffee2 26bseade 89 93 f2 2c 64 01 19 16-04 374312030 ...d....testl @
fffffse2 26bBe0ed@ le 06 O3 55 04 03 13 17- 55 4 2d 57 49 4e ...U....test-WIN
1802 26b800OTE 2d 39 37 56 4f 45 35 41-34 4T 38 4c 2d 43 41 30 -97VOESA408L-CAB
fffff802° 26080160 1le 17 Gd 31 38 30 38 30-33 31 34 30 36 32 37 5a ...1808031486272
fffffeez 26b8e11e 17 od 31 39 30 38 30 33-31 34 30 236 32 37 5a 30 ..1908831408627Z0
fffff802°26b80126 1c 31 1a 30 18 06 03 55-04 03 13 11 74 65 73 74 .1.0...U....test
fffff802° 26080130 44 47 53 69 67 6e 69 6e-67 43 65 72 74 30 82 @1 DGSigningCerte..
[...]

Figure 4: Loaded SIPolicy.p7b

winload!MinCryptVerifySignedDatalMode:
00000000 007bd1e8 4055 push rbp

kd> r

rax=000008000881a6a98 rbx=0000000000000903 rcx=fffff80226b7feect
rdx=0000000000000903 [rsi=00000000861a6bc® rdi=000006080683c606
[...1

kd> kc

Call Site

006 winload!MinCryptVerifySignedDatalMode
81 winload!MinCrypL_CheckSignedData

02 winload!BlSIPolicyParsePolicyData

03 winload!B1SIPolicyCheckPolicyOnDevice
©4 winload!OslpProcessSIPolicy

B85 winload!OslPrepareTarget

06 winload!OslpMain

67 winload!0slMain

08 9x0

Figure 5: Invocation of MinCryptVerifySignedDatalLMode

It is important to emphasize that in the scenario, where the WDAC policy is signed with a certificate that cannot
be verified against a root certificate stored in RootTable, the certificate is considered valid without verification
against an alternative root certificate.

Once MinCryptVerifyCertificateWithRootInfo is finished executing, the WDAC policy, that is, the WDAC content,
is verified. To this end, MinCryptVerifySignedDatal Mode first invokes the MinCryptHashMemory function. Min-
CryptHashMemory computes the hash value of the WDAC content, which stored in the contentinfo field of the
SignedData structure. The algorithm used to calculate the hash value of the WDAC content is stored in digestAl-
gorithms.

MinCryptVerifySignedDatal Mode then invokes the |_MinCryptVerifySignerAuthenticatedAttributes function. This
function verifies the computed hash value against the hash value stored in authenticatedAttributes. Finally, Min-
CryptVerifySignedDatal. Mode invokes MinCryptVerifySignedHash in order to verify the signed hash of the WDAC
content stored in encryptedDigest. To this end, it uses the previously verified signer certificate and the verified
computed hash value. Only if the verifications performed by |_MinCryptVerifySignerAuthenticatedAttributes and
MinCryptVerifySignedHash are successful, the WDAC content is considered authentic.

3 Windows Loader: OslpLoadAllModules

OslpLoadAllModules performs image loading and integrity verification activities. OslpLoadAllModules invokes
OslLoadDrivers for loading driver executables, and OslLoadlmage for loading any other type of image. The
Windows loader loads the ci.dll library file in the Load/mports function, invoked by OslLoadlmage. All of the
previously mentioned functions ultimately invoke BlimglLoadPEImageEx, which performs image loading and in-
tegrity verification. Figure B depicts the BlimgLoadPEImageEx function loading ci.dll and its image base address
(fffff803°99b 1e000).

winload!BlImglLoadPEImageEx :
20000000 007eb9e4 488bc4 mov rax, rsp

kd=> r

[...]1
[rB=Fffffse397feebfo ro=60000PAAOA1a6816 |r18=0000080000E0A00
T...T

kd> du @r8
fffffa03°97feebfe "\Windows\system32\CI.dl1"|

kd> dps 0600000006126810 L1
00000000° 00126810 fTffff803 99bleddo

kd> !dh -e fffffge3 99bledod

_IMAGE EXPORT DIRECTORY T711f80399ba3000 (size: 00000130)
Name: CI.dll

Characteristics: 00000000 Ordinal base: 1.
Number of Functions: 11. Number of names: 8. EAT: fffff8o399ba3028.
ordinal hint target name

4 0 FFFFF80399B41650 CiCheckSignedFile
1 FFFFF80399B41700 CiFindPageHashesInCatalog
2 FFFFF80399B41780 CiFindPageHashesInSignedFile
3 FFFFF80399B41790 CiFreePolicyInfo

8 4 FFFFF80399B41520 CiGetPEInformation

] 5 FFFFF88399B40110 Cilnitialize

10 6 FFFFF80399B4C3D0 CivalidateFileObject
11 7 FFFFF80399B415D0 CiVerifyHashInCatalog

1 FFFFF80399B4C9EG [NONAME]
2 FFFFFB0399B51AA0 [NONAME]
FFFFF86399B51C80 [NONAME]

Figure 6: The image base address of ci.dll

Once ci.dllis loaded, its image base address is stored in a linked list referenced by the LoadOrderListHead vari-
able. This variable is stored in the _LOADER_PARAMETER_BLOCK structure. Figure E depicts a portion of _-
LOADER_PARAMETER_BLOCK and the LoadOrderListHead variable referencing the image base address of ci.dlL

kd> dps poi(winload!OslLoaderBlock)

[...]
[fffffao1 ecsoafdo fFfTfa01 ec94asbo

[«.:]

[kd> dl fffffeel ec94a6he |

[-..1

FFFFf801 ecBO7a70 0DAOOAOA ABOABHAD BHBHEEE0” HBOABEEN
[TTfTf801 ec898a6a fFTTF801 ec899adn| FTTffBO1 ec897a60
TITTT801 ecBOBa7d 0DOOOAOA 0ODAEHOO BHOOBOAD” HEOABOER
Fanal

kd> dps Tffff8pl ec899add + 0x30 L1
fffff801 ec899a7e fffffap3 99blebon

Figure 7: A portion of _LOADER_PARAMETER_BLOCK and LoadOrderListHead
Once the Windows loader has transferred execution control to the kernel, it uses the populated LoadOrderList-
Head variable to pass the image base address of ci.dll (fffff803°99b1e000) to the Windows kernel for allocation of
ci.dllin kernel's context.

4 Windows Loader: OslBuildCodelntegrityLoaderBlock

OslBuildCodelntegrityLoaderBlock first populates the _LOADER_PARAMETER_CI_EXTENSION structure with WDAC
initialization parameters. These parameters are used by the kernel to further initialize WDAC. A reference to

_LOADER_PARAMETER_CI_EXTENSION and its size are stored in the _LOADER_PARAMETER_EXTENSION struc-
ture, in the Codelntegrityl oaderBlockSize and the Codelntegrityl oaderBlock, respectively (see Figure E]. The
_LOADER PARAMETER_EXTENSION structure is referenced by the Extension variable. This variable is stored in
_LOADER_PARAMETER_BLOCK, at offset 0xF0 (see Figure E].

typedef struct LOADER PARAMETER BLOCK {
[...]
PLOADER_PARAMETER EXTENSION Extension; // OxFO
[...]

} LOADER_PARAMETER BLOCK, * PLOADER PARAMETER BLOCK

typedef struct LOADER PARAMETER EXTENSION {
[...]
PLOADER PARAMETER CI_ EXTENSION CodeIntegritylLoaderBlock; // ©x9D8
ULONG32 CodeIntegritylLoaderBlockSize; // OxSE0
[...]

} LOADER_PARAMETER_EXTENSION, * PLOADER PARAMETER_EXTENSION;

typedef struct LOADER PARAMETER CI EXTENSION {
[...]
UINT8 CodeIntegrityPolicyHash[32]; // ©x0020

ULONG32 CodeIntegrityPolicyType // 0x1338
ULONG32 CodeIntegrityPolicySize // 0x133c
UINT8 CodeIntegrityPolicy[CodeIntegrityPolicySize] // 0x1340

[...]
} LOADER_PARAMETER CI_EXTENSION, * PLOADER PARAMETER CI_EXTENSION;

Figure 8: Relevant _LOADER_PARAMETER_* structures

The OslBuildCodelntegrityLoaderBlock function populates_LOADER_PARAMETER_C|_EXTENSION with WDAC ini-
tialization parameters, such as:

e CodelntegrityPolicyHash: This parameter stores the hash value of the WDAC content. This hash is calcu-
lated in the OslpCalculateCodelntegrityPolicyHash function, invoked by OslBuildCodelntegrityLoaderBlock;

e CodelntegrityPolicySize: This parameter stores the size of the WDAC content; and
e CodelntegrityPolicy: This parameter stores the WDAC content extracted from contentinfo.

After OslBuildCodelntegrityLoaderBlock has finished executing, the Windows loader transfers the execution con-
trol to the kernel. The kernel uses the populated _LOADER PARAMETER_C|_EXTENSION structure, ultimately
referenced by _LOADER_PARAMETER_BLOCK to further initialize WDAC.

5 Windows Kernel: MiReloadBootLoadedDrivers

After execution control has been transferred to the kernel, it invokes the /nitBootProcessor function. This func-
tion is responsible for conducting relevant tasks, for example, initializing memory management functionalities.
InitBootProcessor ultimately invokes the memory management routine Mm/nitSystem. This routine, in turn, in-
vokes MiReloadBootlLoadedDrivers. This function allocates ci.dll in the context of the kernel based on the image
base address of ci.dll (see, for example, fffff803'99b1e000 in Figure B], passed by the Windows loader.

MiReloadBootLoadedDrivers invokes the MiUpdate Thunks function, which allocates ci.dllin the context of the ker-
nel. Figure H depicts the invocation of MiUpdateThunks. The second parameter of MiUpdateThunks (rdx in Fig-
ure B] istheimage base address of ¢i.dll passed by the Windows loader, whereas the third (r8 and fffff808 c5fd0000
in Figure B] is an address in the context of the kernel, where ci.dll is to be allocated.

Once ci.dll is allocated in the kernel's context, the kernel invokes the SeplnitializeCodelntegrity function. This
function initializes the interface exposed by ci.dll, after which the kernel can use code integrity functionalities.

Itis important to emphasize that the integrity of ci.dll is verified by the Windows loader. This shows that the root
of trust for verifying the integrity of ci.dll is the Windows loader.

nt!MiUpdateThunks:
fFFffB03°9961e8ch 4BBI5c2408 mow word ptr [rsp+B], rbx

kd> r
£
rdx=fffff86399b1le8f0 [si=fffff86399bledd rdi=0080000000008086
ré=fffff8e8c57deeee |r9-00000000000a0000 rle=e 0000

kd> lm v m CI
start end module name
| fifffaes’ c5fdeeee fffffaes c6070000 CI (deferred)
Image path: CL.dlL

Image name: CI.dll

Timestamp: Tue Mar 6 06:25:49 2018 (SA9E265D)
CheckSum: 88090508

ImagesSize: 080A0000

File version: 10.0.14393.2155

Product version: 18.8.14393.2155

File flags: 6 (Mask 3F)

File 0S: 8064 NT Win32

File type: Driver

File date: 60008060 . 00608060
Translations: 8409.84b0
Infermation from resource tables:

CompanyName Micresoft Corporation

Pro Microsoft® Windows® Operating System
ci.dll

e: ci.dll
10.0,14393.2

18.8

55

393.2155 (rsl_release_1.188365-1842)
Code Integrity Module

right: @ Microsoft Corporation. All rights reserved.

Figure 9: Relocated ci.dlL file

6 Windows Kernel: SeCodelntegritylnitializePolicy

After ci.dll has been allocated in the kernel's context and the interface exposed by it is available to the kernel,
the kernel initializes the WDAC policy. The SeCodelntegritylnitializePolicy function initializes the WDAC policy.
This involves storage of the WDAC policy in the context of the kernel.

SeCodelntegritylnitializePolicy receives as parameter the _LOADER_PARAMETER_BLOCK structure, populated
and passed by the Windows loader (KeLoaderBlock in Figure @]. This structure ultimately references_LOADER._-
PARAMETER_CI_EXTENSION (Codelntegrityl oaderBlock in Figure], which, among other things, stores Codeln-
tegrityPolicy and CodelntegrityPolicyHash. CodelntegrityPolicy stores the WDAC content itself.

SeCodeIntegrityInitializePolicy(KeLoaderBlock)

{
[...]
Extension = *(_LOADER_PARAMETER EXTENSION *)(KelLoaderBlock + 0xFO});
[...]
CodeIntegritylLoaderBlock = *(LOADER PARAMETER CI EXTENSION *)(Extension + ©x9D8)
[...1]
if (CiInitializePolicy)
{
[...1
CiInitializePolicy(CodeIntegritylLoaderBlock, [...]1);
[...1
}
[...]
}

Figure 10: Pseudo-code of the implementation of SeCodelntegritylnitializePolicy

SeCodelntegritylnitializePolicy invokes the CilnitializePolicy function. This function receives the _LOADER_PA-
RAMETER_CI_EXTENSION structure as parameter. CilnitializePolicy populates the ci.dll variables g_SiPolicyHan-
dles and g_SiPolicyHash with the values stored in the CodelntegrityPolicy and CodelntegrityPolicyHash variables,
respectively. An analysis of the WDAC initialization functionalities showed that the hash value stored in Codeln-
tegrityPolicyHash is not used for verifying the integrity of the WDAC content stored in CodelntegrityPolicy.

Figure [1| depicts a portion of a populated g_SiPolicyHandles variable. Once g_SiPolicyHandles is populated, the
Windows kernel can use the WDAC content stored in g_SiPolicyHandles for verification purposes. The description
of each of the fields of g_SiPolicyHandles is out of the scope of this work.

Itis important to emphasize that the integrity of the WDAC content is verified by the Windows loader. This shows
that the root of trust for verifying the integrity of the WDAC content is the Windows loader.

cit g SiPolicyHandles

+0%x000 PlatformID ¢ nt! _GUID
+0x010 PolicyTypelD : nt!_GUID
[...1]

+0x02c RuleOptionFlags : Uint4B
[...]

+0x068 CodeIntegrityPolicySize : Int4B
+0x06c CodeIntegrityPolicy 1 Ptré4 void

Figure 11: g_SiPolicyHandles

References

[RSI12] Mark E. Russinovich, David A. Solomon, and Alex lonescu. Windows Internals, Part 2. 2012. Microsoft
Press.

	Introduction
	Windows Loader: OslpProcessSIPolicy
	Windows Loader: OslpLoadAllModules
	Windows Loader: OslBuildCodeIntegrityLoaderBlock
	Windows Kernel: MiReloadBootLoadedDrivers
	Windows Kernel: SeCodeIntegrityInitializePolicy

		2019-10-25T11:52:39+0100
	amilenkoski.client.ernw.net

