
Device Guard Image Integrity: Architecture Overview

Aleksandar Milenkoski)

amilenkoski@ernw.de
Dominik Phillips
dphillips@ernw.de

This work is part of theWindows Insight series. This series aims to assist efforts on analysing inner working principles,
functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar
Milenkoski (amilenkoski@ernw.de) or Dominik Phillips (dphillips@ernw.de). For inquiries on this work contact the
corresponding author ()).

The content of this work has been created in the course of the project named ’Studie zu Systemaufbau, Protokollierung,
Härtung und Sicherheitsfunktionen in Windows 10 (SiSyPHuS Win10)’ (ger.) - ’Study of system design, logging, hard-
ening, and security functions in Windows 10’ (eng.). This project has been contracted by the German Federal Office for
Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik - BSI).

Required Reading
In addition to referenced work, related work focussing on Windows Architecture, the Trusted Platform Mod-
ule (TPM), and Virtual Secure Mode (VSM), part of the Windows Insight series, are relevant for understanding
concepts and terms mentioned in this document.

Technology Domain
The operating system in focus is Windows 10, build 1607, 64-bit, long-term servicing branch (LTSB).

1 Introduction
The Device Guard component of Windows 10 implements a feature for preventing the execution of untrusted
code. Untrusted code is program code whose integrity and authenticity cannot be verified. For example, this is
code that has been tampered with in an unauthorized manner, or originates from untrusted sources.

Device Guard implements a feature referred to as configurable code integrity. Configurable code integrity takes
user-defined criteria into account in order to verify images, that is, to allow only specific images – executable
files – to execute.1 These criteriamay involve cryptographic information (e.g., hash values) or non-cryptographic
information (e.g., file names). In addition to configurable code integrity, Windows 10 implements code integrity
functionalities that do not take user-defined criteria into account. These are implemented as part of the Win-
dows boot manager, the Windows loader, and the kernel. This work refers to these functionalities as non-
configurable code integrity. When enabled, the VSM feature – hypervisor code integrity (HVCI), protects con-
figurable and non-configurable code integrity functionalities by executing them in the secure environment. If
the Unified Extensible Firmware Interface (UEFI) is present, the UEFI SecureBoot feature may be deployed for

1https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/ [Retrieved:
17/7/2018]

https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/


the verification of the integrity of the UEFI firmware and the Windows boot entities, the boot manager and the
Windows loader.

The configurable code integrity features can be structured into two categories: user-mode code integrity (UMCI)
and kernel-mode code integrity (KMCI) ([YIRS17], Chapter 7). UMCI is for entities that operate in user-mode,
such as user applications and services. KMCI is for entities that operate in kernel-mode. This includes the
kernel and its extensions, such as drivers. The UMCI and KMCI implementations of the configurable code
integrity feature are also known as Windows Defender Application Control (WDAC).

2 Architecture Overview
Figure 1 depicts a compact overview of the architecture of the Device Guard and Windows 10 code integrity
features. Configurable code integrity is based on user-defined rules. Among other things, these rules may
specify file names, file versions, and hashes of images. An image is verified based on comparing rule-specified
data with relevant data associated with the image. For example, a rule may specify the image’s hash value.
When the image is verified, Windows compares the rule-specified hash value with a hash value that it has
calculated. In the case of a mismatch, the image may not be allowed to execute.

Figure 1: The architecture of the Device Guard and Windows 10 code integrity features

User-defined rules are stored in a policy file, referred to as WDAC policy in this work (Policy file in Figure 1).
This file is written in the Extensible Markup Language (XML) format and then converted into binary format for
deployment. The WDAC policy can be digitally signed in order to prevent modifications after it is deployed. In
addition, the TPM measures WDAC policies for integrity measurement purposes.

A WDAC policy consists of rules grouped into sections. In a WDAC policy, a user may define:

• policy rule options (Rule options in Figure 1): Policy rule options configure the overall functionality of
WDAC. An example is the Enabled: UMCI option, which enables UMCI. Table 1 lists the different policy
rule options and provides descriptions. The descriptions presented in Table 1 are based on the informa-
tion available at https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-
integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels [Retrieved: 17/7/2018].

• file rules (File rules in Figure 1): File rules configure verification for images. This configuration is done
based on associating a specific level with file rules. Such levels specify at what level a given image is

https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels


trusted. This work refers to these levels as policy levels. Table 2 lists the different policy levels and pro-
vides descriptions. The descriptions presented in Table 2 are based on the information available at https://
docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-
rules-and-file-rules#code-integrity-file-rule-levels [Retrieved: 17/7/2018].

The policy rule options and policy levels that are available on a givenWindows 10 instance can be observed by in-
vestigating the policy XML schema. The schema is stored in theWindows\schemas\CodeIntegrity\cipolicy.xsd file.
Table 1 and Table 2 present only the information about policy rule options and levels available at https://docs.
microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-
file-rules#code-integrity-file-rule-levels [Retrieved: 17/7/2018].

The policy levels make WDAC highly configurable and allow for administrators to decide on a trade-off between
policy manageability and verification strictness. For example, in contrast to FileName, the policy level Hash
reports any modification of a file’s content. However, the policy in which this level is specified has to be updated
every time the content of the file is modified. This makes Hash an operationally challenging policy level for
verifying files that are frequently modified.

Policy rule option Description
Enabled: UMCI This option applies the deployedWDAC policy to entities

that operate in user- and in kernel-mode. By default,
a WDAC policy applies only to entities that operate in
kernel-mode.

Enabled: Boot Menu Protection Currently not supported.
Required: WHQL This option requires every driver specified in the WDAC

policy to be signed by the Windows Hardware Quality
Labs (WHQL). WHQL signs images that have passed
Windows Hardware Certification Kit (WHCK) tests.

Enabled: Audit Mode This option enables the audit mode of a WDAC policy
– the option allows for all images to execute, but logs
relevant events. By default, a WDAC policy operates in
audit mode. If this policy rule option is not set, a WDAC
policy operates in enforcement mode – images whose
execution is not allowed by the policy are not executed.

Disabled: Flight Signing This option restricts the execution of images that are
flight signed. Flight signed images are images that are
signed during their development. Flight signed images
are typically release candidates, for example, Windows
Insider Preview image builds.2

Enabled: Inherit Default Policy Currently not supported.
Enabled: Unsigned System Integrity Policy This option allows the WDAC policy to be deployed un-

signed. By default, a WDAC policy has to be signed.
Allowed: Debug Policy Augmented Currently not supported.
Required: EV Signers This option requires for driver images to be signed by

the WHQL and by Extended Validation (EV) certificates.
For an EV certificate to be issued to a given entity, the
entity is subjected to a rigorous vetting by a certificate
authority.

Enabled: Advanced Boot Options Menu This option configures the Windows advanced boot
menu to be presented to physically present users when
a WDAC policy is deployed. By default, this menu is not
presented.

2https://insider.windows.com/en-us/ [Retrieved: 17/7/2018]

https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels
https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels
https://insider.windows.com/en-us/


Enabled: Boot Audit on Failure This option configures the WDAC policy operating in en-
forcement mode to switch to audit mode if image verifi-
cation fails during system startup.

Disabled: Script Enforcement Currently not supported.
Required: Enforce Store Applications This option applies the WDAC policy to Universal Win-

dows Applications (UWAs). Otherwise, WDAC policies
are not applied to UWAs.

Enabled: Managed Installer This option allows for images installed by a software
distribution solution, such as the System Center Config-
uration Manager, to execute. 3

Enabled: Intelligent Security Graph Authorization This option allows for images classified as “known
good” by the Intelligent Security Graph to execute.4

Enabled: Invalidate EAs on Reboot This option invalidates cached image classifications by
the Intelligent Security Graph on system reboot. There-
fore, it forces re-evaluation of images that have been
allowed to execute with the Enabled: Intelligent Security
Graph Authorization option configured.

Enabled: Update Policy No Reboot This option allows for modifications to an already de-
ployed WDAC policy to be applied without system re-
boot. By default, for changes to a deployedWDAC policy
to take effect, the system at which the policy is deployed
has to be rebooted.

Table 1: Policy rule options

Policy level Description
Hash This level verifies an image based on the image’s hash value.
FileName This level verifies an image based on the image’s name. This name is stored as part

of the image as an image property.
LeafCertificate This level verifies an image based on a hash value of a portion of the certificate

issued to the image’s signer. This certificate is the leaf of the certificate chain used
to sign the image.

PcaCertificate This level verifies an image based on a hash value of a portion of the certificate that
is at the highest position in the certificate chain used to sign the image, with the
exception of the root certificate. This is the certificate below the root certificate in
the certificate chain. We refer to it as the PCAcertificate.

RootCertificate Currently not supported.
Publisher This level verifies an image based on a hash value of a portion of the PCAcertifi-

cate and the common name (CN) field of the leaf certificate in the certificate chain
used to sign the image. This level is a combination of the PcaCertificate level with a
verification based on the previously mentioned CN field.

SignedVersion This level verifies an image based on a hash value of a portion of the PCAcertificate,
the CN field of the leaf certificate in the certificate chain used to sign the image, and
the image’s file version. The image’s file version has to be at, or above, a minimum
version specified in the WDAC policy. This level is a combination of the Publisher
level with a verification based on the image’s file version.

3http://download.microsoft.com/download/5/D/B/5DBEBA38-8D5D-4119-B2E8-B8369B74BF43/system_center_configuration_
manager_and_microsoft_intune_datasheet.pdf [Retrieved: 17/7/2018]

4http://cloud-platform-assets.azurewebsites.net/intelligent-security-graph/ [Retrieved: 17/7/2018]

http://download.microsoft.com/download/5/D/B/5DBEBA38-8D5D-4119-B2E8-B8369B74BF43/system_center_configuration_manager_and_microsoft_intune_datasheet.pdf
http://download.microsoft.com/download/5/D/B/5DBEBA38-8D5D-4119-B2E8-B8369B74BF43/system_center_configuration_manager_and_microsoft_intune_datasheet.pdf
http://cloud-platform-assets.azurewebsites.net/intelligent-security-graph/


FilePublisher This level verifies an image based on its name, a hash value of a portion of the
PCAcertificate, the common name (CN) field of the leaf certificate in the certificate
chain used to sign the image, and the image’s file version. This level is a combination
of the SignedVersion level with a verification based on the image’s name.

WHQL This level allows an image to execute if it has been signed by the WHQL.
WHQLPublisher This level allows an image to execute if it has been signed by the WHQL and verified

based on the CN field of the leaf certificate in the certificate chain used to sign the
image. This level is a combination of theWHQL level with a verfication based on the
previously mentioned CN field.

WHQLFilePublisher This level allows an image to execute if it has been signed by the WHQL, verified
based on the CN field of the leaf certificate in the certificate chain used to sign the
image, and verified based on the image’s file version. The image’s file version has
to be at, or above, a minimum version specified in the WDAC policy. This level is a
combination of theWHQLPublisher level with a verfication based on the image’s file
version.

Table 2: Policy levels

Once a WDAC policy in XML format is converted into binary format, it can be deployed. For example, the group
policy at the Administrative Templates\System\Device Guard policy path may be used for policy deployment. Win-
dows 10 stores WDAC policies in the SIPolicy.p7b file. On non-UEFI platforms, Windows 10 places the SIPol-
icy.p7b file in the %System%\System32\CodeIntegrity\ directory. On UEFI-based platforms, Windows 10 places
the SIPolicy.p7b file additionally in the \EFI\Microsoft\Boot\ directory of the boot partition.

Figure 2 depicts the placement of a WDAC policy stored in the binary file C:\Users\ernw\Desktop\DeviceGuard-
Policy.bin. This file is deployed by configuring the Administrative Templates\System\Device Guard group pol-
icy with the Group Policy Object Editor utility. Once a user configures this group policy, the Group Policy Ob-
ject Editor utility loads the dggpext.dll library file and invokes the InstallConfigCIPolicy function. This func-
tion copies the content of DeviceGuardPolicy.bin to the %System%\System32\CodeIntegrity\SIPolicy.p7b and the
\EFI\Microsoft\Boot\SIPolicy.p7b file, depending on the presence of UEFI. The analysis presented in this work
was conducted on a platform where UEFI is not present.

Figure 2: Placement of a WDAC policy



The configurable and non-configurable code integrity features implement functionalities in the boot manager,
the Windows loader, and the Windows kernel. In the context of the boot manager and the Windows loader, code
integrity functionalities are implemented as part of their executables. In the context of the Windows kernel,
code integrity functionalities are implemented as kernel routines in external library files. If the VSM feature
HVCI is disabled, code integrity functionalities are executed in the context of the ci.dll library file. This file is
loaded by the ntoskrnl.exe executable, which implements the normal kernel (Normal kernel in Figure 1). The
ci.dll library file exposes an interface of functions to the kernel for use.

If HVCI is enabled, Windows routes code integrity functionalities to the secure environment, that is, to the virtual
trust level (VTL) 1, for execution (VTL 0, VTL 1, and VTL context switch in Figure 1). Code integrity functionalities
are then executed in the context of the skci.dll library file. This prevents attackers that have gained access to
the normal environment to tamper with code integrity functionalities. skci.dll is loaded by the securekernel.exe
executable, which implements the secure kernel (Secure kernel in Figure 1).



References
[YIRS17] Pavel Yosifovic, Alex Ionescu, Mark E. Russinovich, and David A. Solomon. Windows Internals, Part 1

and Part 2. 2017. Microsoft Press.


	Introduction
	Architecture Overview

		2019-10-25T11:50:04+0100
	amilenkoski.client.ernw.net




